Estudio de las características fisicoquímicas de los carbones mesoporosos obtenidos utilizando sílica mesoporosa tipo SBA-16 como molde
DOI:
https://doi.org/10.17533/udea.redin.14161Palabras clave:
porosidad controlada, características químicas, adsorción de violeta de metilo, carbones y sílicas mesoporosasResumen
En este trabajo se determinan las características porosas y químicas de carbones mesoporosos sintetizados utilizando sílica mesoporosa tipo SBA- 16 como molde y se correlacionan estas características con la capacidad de adsorción de colorantes, lo cual a su vez se constituye en una técnica mas de caracterización fisicoquímica de estos materiales. Se utilizan dos moldes silíceos tipo SBA-16 con diferencias en su porosidad y sacarosa y etileno como fuente de carbón. Se encuentra que el tamaño, volumen de poro y área superficial de estos materiales se pueden modular mediante la selección del molde pero no sus características químicas. Los carbones mesoporosos se sintetizan por el método húmedo, en el cual se utiliza sacarosa como fuente de carbono o por deposición de vapores de etileno utilizando dos sílicas mesporosas con diferentes características de porosidad.Descargas
Citas
J. Lee, J. Kim, T. Hyeon. “Recent Progress in the Synthesis of Porous Carbon Materials”. Adv.Mater. Vol. 18. 2006. pp. 2073-2094. DOI: https://doi.org/10.1002/adma.200501576
C. Liang, Z. Li., S. Dai. “Mesoporous Carbon Materials: Synthesis and Modification”. Angew. Chem. Int. Vol. 47. 2008. pp. 3696-3717. DOI: https://doi.org/10.1002/anie.200702046
A. B. Fuertes. “Template synthesis of mesoporous carbons with a controlled particle size”. J. Mater. Chem. Vol. 13. 2003. pp. 3085- 3088. DOI: https://doi.org/10.1039/b307373d
W. Shen, X. Yang, Q. Guo, Y. Liu, Y. Song, Z. Han, Q. Sun, J. Cheng. “The effect of carbon precursor on the pore size distribution of mesoporous carbon during templating synthesis process”. Mater. Lett. Vol. 60. 2006. pp. 3517-3521. DOI: https://doi.org/10.1016/j.matlet.2006.03.042
R. Ryoo, M. Kruk, M. Jaroniec. “ Ordered Mesoporous Carbons”. Adv. Mater. Vol. 13. 2001. pp. 677-681. DOI: https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
A. H. Lu, F. Schüth. “Nanocasting pathways to create ordered mesoporous solids”. C. R. Chimie. Vol. 8. 2005. pp. 609-620. DOI: https://doi.org/10.1016/j.crci.2004.10.020
K. P. Gierszal, T. W. Kim, R. Ryoo, M. Jaroniec. “Adsorption and Structural Properties of Ordered Mesoporous Carbons Synthesized by Using Various Carbon Precursors and Ordered Siliceous Mesostructures as Templates”. J. Phys. Chem. B. Vol. 109. 2005. pp. 23263-23268. DOI: https://doi.org/10.1021/jp054562m
D. J. Kim, H. I. Lee, J. E. Yie, S. J. Kim, J. M. Kim. “Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan”. Carbon. Vol. 43. 2005. pp. 1868-1873. DOI: https://doi.org/10.1016/j.carbon.2005.02.035
S. J. Gregg, K. S. W. Sing. Adsorption, surface area and porosity. 2a. ed. Ed. Academic Press. London. 1982. pp. 1-313.
J. Jagiello, W. Betz. “Characterization of pore structure of carbon molecular sieves using DFT analysis of Ar and H2 adsorption data”. Micropor. Mesopor. Mater. Vol. 108. 2008. pp. 117-122. DOI: https://doi.org/10.1016/j.micromeso.2007.03.035
H. P. Boehm. “Surface oxides on carbon and their analysis: a critical assessment”. Carbon. Vol. 40. 2002. pp.145-149. DOI: https://doi.org/10.1016/S0008-6223(01)00165-8
H. Darmstadt, C. Roy, S. Kaliaguine, S. J. Choi, R. Ryoo. “Surface chemistry of ordered mesoporous carbons”. Carbon. Vol. 40. 2002. pp. 2673-2683. DOI: https://doi.org/10.1016/S0008-6223(02)00187-2
W. Shen, Z. Li, Y. Liu. “Surface Chemical Functional Groups Modification of Porous Carbon”. Recent Patents on Chem. Eng. Vol. 1. 2008. pp. 27-40. DOI: https://doi.org/10.2174/2211334710801010027
P. A. Bazula, A. H. Lu, J. J. Nitz, F. Schuth. “Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach”. Micropor. Mesopor. Mater. Vol. 108. 2008. pp. 266-275. DOI: https://doi.org/10.1016/j.micromeso.2007.04.008
R. Palacio, M. Mesa, J. L. Guth, L. Sierra. “Mesoporous carbons, templated by SBA16-type silica, as reverse stationary phases for HPLC”. 5th international Mesostructured Material Symposium. Shangai. 2006. pp. 1-2.
H. Kiswanto, H. Sudrajat, S. Li, P. Sathyavisal, A. Ngah. “Adsorption of dyes by mesoporous carbon CMK-1”. J. Applied Sci. Env. Sanitation. Vol. 5. 2009. pp. 30-41.
H. Chang, S. H. Joo, C. Pak. “Synthesis and characterization of mesoporous carbon for fuel cell applications”. J. Mater. Chem. Vol. 17. 2007. pp. 3078-3088. DOI: https://doi.org/10.1039/b700389g
P. V. Messina, P. C. Schulz. “Adsorption of reactive dyes on titania-silica mesoporous materials”. J. Colloid Interface Sci. Vol. 299. 2006. pp. 305-320. DOI: https://doi.org/10.1016/j.jcis.2006.01.039
T. Robinson, G. McMullan, R. Marchant, P. Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative”. Bioresource Tech. Vol. 77. 2001. pp. 247-255. DOI: https://doi.org/10.1016/S0960-8524(00)00080-8
M. Mesa, L. Sierra, J. Patarin, J. L. Guth, “Morphology and porosity characteristics control of SBA-16 mesoporous silica. Effect of the triblock surfactant Pluronic F127 degradation during the synthesis”. Solid State Sci. Vol. 7. 2005. pp. 990-997. DOI: https://doi.org/10.1016/j.solidstatesciences.2005.04.006
L. Sierra, M. Mesa, A. Ramírez, B. López, J. L. Guth. “Synthesis Of Micron-Sized Particles of Mesoporous Silica from Tri-Block Surfactants in the Presence of Fluoride, usable as Stationary Phase in HPLC”. Recent Advances in the Science and Technology of Zeolites and Related Materials. Vol. 154. 2004. pp. 573-580. DOI: https://doi.org/10.1016/S0167-2991(04)80853-X
P. Kowalczyk, M. Jaroniec, K. Kaneko, A. P. Terzyk, P. A. Gauden, “Improvement of the Derjaguin- Broekhoff-De Boer theory for the capillary condensation/evaporation of nitrogen in spherical cavities and its application for the pore size analysis of silicas with ordered cagelike mesopores”. Langmuir. Vol. 21. 2005. pp. 10530-10536. DOI: https://doi.org/10.1021/la0513609
M. Mesa, L. Hoyos, L. Sierra, “Effect of the porosity and hydrothermal stability of SBA-16 type mesoporous silica on the characteristics of their carbon replicas”. Zeolites and Related Materials: Trends, Targets and Challenges. Vol. 174. 2008. pp. 361-364. DOI: https://doi.org/10.1016/S0167-2991(08)80217-0
Z. Yang, R. Mokaya. “Probing the effect of the carbonisation process on the textural properties and morphology of mesoporous carbons”. Micropor. Mesopor. Mater. Vol. 113. 2008. pp. 378-384. DOI: https://doi.org/10.1016/j.micromeso.2007.11.035
J. Lahaye. “The chemistry of carbon surfaces”. Fuel. Vol. 77. 1998. pp. 543-547. DOI: https://doi.org/10.1016/S0016-2361(97)00099-9
M. Domingo García, F. J. López Garzón, M. J. Pérez Mendoza. “On the Characterization of Chemical Surface Groups of Carbon Materials”. J. Colloid Interf. Sci. Vol. 248. 2002. pp. 116-122. DOI: https://doi.org/10.1006/jcis.2001.8207
E. Papirer, J. Dentzer, S. Li, J. B. Donnet. “Surface groups on nitric acid oxidized carbon black samples determined by chemical and thermodesorption analyses”. Carbon. Vol. 29. 1991. pp. 69-72. DOI: https://doi.org/10.1016/0008-6223(91)90096-2
M. Kruk, M. Jaroniec, R. Ryoo, S. H. Joo. “Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates”. J. Phys. Chem. B. Vol. 104. 2000. pp. 7960-7968. DOI: https://doi.org/10.1021/jp000861u
E. Fuente, J. A. Menéndez, M. A. Diez, D. Suarez, M. A. Montes-Moran. “Infrared Spectroscopy of Carbon Materials: A Quantum Chemical Study of Model Compounds”. J. Phys. Chem. B. Vol. 107. 2003. pp. 6350-6359. DOI: https://doi.org/10.1021/jp027482g
P. E. Fanning, M. A. Vannice. “A DRIFT study of the formation of surface groups on carbon by oxidation”. Carbon. Vol. 31. 1993. pp. 721-730. DOI: https://doi.org/10.1016/0008-6223(93)90009-Y
Q. Zhuang, T. Kyotani, A. Tomita. “DRIFT and TK/ TPD analyses of surface oxygen complexes formed during carbon gasification”. Energy & fuels. Vol. 8. 1994. pp. 714-718. DOI: https://doi.org/10.1021/ef00045a028
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2010 Revista Facultad de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.