Evaluación de la resistencia a la corrosión erosión de recubrimientos de níquel modificados con nanopartículas de diamante

Authors

  • Luz Amira Torres-Medina Universidad de Antioquia
  • Jorge Andrés Calderón Universidad de Antioquia

Keywords:

Electrodeposición, nanopartículas, diamante, níquel, recubrimientos compuestos

Abstract


La incorporación de nanopartículas de carburos, nitruros, óxidos o diamante en una matriz metálica, generalmente muestran mejoras en la dureza, en la resistencia al desgaste y a la corrosión, comparado con un recubrimiento del metal puro. Estos recubrimientos compuestos se pueden obtener mediante la técnica de electrodeposición, logrando economía y calidad en los depósitos. Los recubrimientos de níquel modificados con nanopartículas de diamante (Ni-D), fueron aplicados sobre un acero AISI SAE 1016 mediante la técnica de electrodeposición desde una solución típica Watts sin aditivos, que contiene nanopartículas de diamante. El efecto que ejercen algunas variables que intervienen en el proceso de electrodeposición como: densidad de corriente, velocidad de agitación y concentración de partículas en el baño, en la dureza y en la resistencia a la corrosión-erosión, se estudiaron mediante un diseño factorial completamente aleatorizado 2k. La resistencia a la corrosiónerosión se evaluó mediante el monitoreo del potencial de corrosión de las probetas con recubrimiento sometidas a un fluido corrosivo y abrasivo en movimiento. Los recubrimientos compuestos de Ni-D obtenidos presentan mejor resistencia a la corrosión-erosión que los recubrimientos de níquel puro. Los recubrimientos más resistentes a la corrosión-erosión fueron los obtenidos a 5 A/dm2, 900 rpm y 10 g/L de diamante.
|Abstract
= 22 veces | PDF (ESPAÑOL (ESPAÑA))
= 21 veces|

Downloads

Download data is not yet available.

References

G. H. Koch, M. P. H. Brongers, N. G. Thompson, Y. P. Virmani, J. H. Payer. “Corrosion costs and preventive strategies in the United States”. Report by CC Technologies Laboratories. Report FHWA-RD-01-156. Springfield (VA). 2001. pp. 1-12.

E. C. Lee, J. W. Choi. “A study on the mechanism of formation of electrocodeposited Ni–diamond coatings”. Surface and Coatings Technology. Vol. 148. 2001. pp. 234-240.

I. García, A. Conde, G. Langelaan, J. Fransaer, J. P. Celis. “Improved corrosion resistance through microstructural modifications induced by codepositing SiC-particles with electrolytic nickel”. Corrosion Science. Vol. 45. 2003. pp. 1173-1189.

M. Lekka, N. Kouloumbi, M. Gajo, P. L. Bonora. “Corrosion and wear resistant electrodeposited composite coatings”. Electrochimica Acta. Vol. 50. 2005. pp. 4551-4556.

A. B. Vidrine, E. J. Podlaha. “Composite electrodeposition of ultrafine γ-alumina particles in nickel matrices”. Journal of Applied Electrochemistry. Vol. 31. 2001. pp. 461-468.

I. Zhitomirsky. “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects”. Advances in Colloid and Interface Science. Vol. 97. 2002. pp. 277-315.

S. Alexandridou, C. Kiparissides, J. Fransaer, J.P. Celis. “On the synthesis of oil-containing microcapsules and their electrolytic codeposition”. Surface and Coatings Technology. Vol. 71. 1995. pp. 267-276.

I. Garcia, J. Fransaer, J. P. Celis. “Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles”. Surface and Coatings Technology. Vol. 148. 2001. pp. 171-178.

L. Orlovskaya, N. Periene, M. Kurtinaitiene, S. Surviliene. “Ni–SiC composite plated under a modulated current”. Surface and Coatings Technology. Vol. 111. 1999. pp. 234-239.

L. Benea, P. L. Bonora, A. Borello, S. Martelli. “Wear corrosion properties of nano-structured SiC–nickel composite coatings obtained by electroplating”. Wear. Vol. 249. 2002. pp. 995-1003.

Y. Li, H. Jiang, L. Pang, B. Wang, X. Liang. “Novel application of nanocrystalline nickel electrodeposit: Making good diamond tools easily, efficiently and economically”. Surface and Coatings Technology. Vol. 201. 2007. pp. 5925-5930.

A. F. Zimmerman, D. G. Clark, K. T. Aust, U. Erb. “Pulse electrodeposition of Ni–SiC nanocomposite”. Materials letters. Vol. 52. 2002. pp. 85-90.

L. Wang, Y. Gao, Q. Xue, H. Liu, T. Xu. “Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings”. Materials Science and Engineering A. Vol. 390. 2005. pp. 313-318.

E, Otero. “Corrosión y degradación de materiales”. Ed. Síntesis. Madrid. España. 1997. pp. 158.

ASTM B183. Standard practice for preparation of low–carbon steel for electroplating. ASTM International West Conshohocken (PA). 1997. pp. 1-3.

ISO 9226. Methods of determination of corrosion rates of standard specimens for the evaluation of corrosivity. ISO (Standard: ISO 9226). Genève. Switzerland. 1992. pp. 1-8.

ASTM E 384. Standard Test Method for Microindentation Hardness of Materials. ASTM International West Conshohocken (PA). 2005. pp. 1-37.

L. Benea, P. L. Bonora, A. Borello, S. Martelli, F. Wenger, P. Ponthiaux, J. Galland. “Preparation and investigation of nanostructured SiC–nickel layers by electrodeposition”. Solid State Ionics. Vol. 151. 2002. pp. 89-95.

G. Ji, O. Elkedim, T. Grosdidier. “Deposition and corrosion resistance of HVOF sprayed nanocrystalline iron aluminide coatings”. Surface and Coatings Technology. Vol. 190. 2005. pp. 406-416.

J. E. Henao, M. A. Gómez, J. A. Calderón. “Depósito electroquímico de recubrimientos compuestos de Ni- SiC y evaluación de su comportamiento anticorrosivo”. Rev. Fac. Ing. Univ. Antioquia. Vol. 49. 2009. pp. 70-80.

Published

2010-01-22

How to Cite

Torres-Medina, L. A., & Calderón, J. A. (2010). Evaluación de la resistencia a la corrosión erosión de recubrimientos de níquel modificados con nanopartículas de diamante. Revista Facultad De Ingeniería Universidad De Antioquia, (54), 42–48. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/14163