Computational simulation of low-density fibrous composites

Authors

  • Fernando Ramírez University of Los Andes
  • Paul Heyliger Colorado State University
  • Guillermo Ramirez Tennessee Technological University
  • Juan Tamasco University of Los Andes

Keywords:

Monte Carlo simulation, effective properties, fibrous composites

Abstract

Low-density fibrous composites are composed of fibers, binder, and air, and exhibit mechanical properties that strongly depend upon the characteristics of the individual constituents. Three dimensional models are developed to predict the effective stiffness and strength of this type of composites. The predicted computational mechanical properties are compared to experimental values obtained for a glass-fiber composite with excellent agreement. Monte Carlo simulations were then performed to study the dependence of the composite effective stiffness on fiber diameter, length, orientation and mechanical properties. Results indicate that for a specific type of fiber and volume fraction, fiber orientation is the parameter determining the behavior of the composite effective stiffness.

|Abstract
= 149 veces | PDF (ESPAÑOL (ESPAÑA))
= 24 veces|

Downloads

Download data is not yet available.

References

H. L. Cox. “The Elasticity and Strength of Paper and Other Fibrous Materials”. Journal of Applied Physics. Vol. 3. 1952. pp. 72-79.

J. A. Astrom, K. J. Niskanen. “Simulation of network fracture”. Proceedings of the 1991 International Paper Physics Conference. Ed. TAPPI. Atlanta (GA). 1991. pp. 31-47.

D. H. Page, R. Seth. “The Elastic Modulus of Paper II. The Importance of Fiber Modulus, Bonding, and Fiber Length”. TAPPI Journal. Vol. 63. 1980. pp.113-116.

C. W. Wang, L. Berhan, A. M. Sastry. “Structure, Mechanics and Failure of Stochastic Fibrous Networks: PartI – Microscale Considerations”. Journal of Engineering Materials and Technology. Vol. 122. 2000. pp. 450-459.

S. Arbabi, M. Sahimi. “Elastic Properties of Three Dimensional Percolation Networks with Stretching and Bond-Bending Forces”. Physical Review B. Vol. 38. 1988. pp. 7173-7176.

R. C. Hamlen. Paper Structures, Mechanics, and Permeability. Computer Aided Modeling. PhD. Thesis. University of Minessota. Minneapolis, Minessota. 1991. pp. 122-128.

D. C. Stahl, S. M. Cramer. “A Three Dimesional Network Model for a Low Density Fibrous Compose”. Journal of Engineering Materials and Technology. Vol. 120. 1998. pp. 126-130.

H. J. Herrmann, A. Hanson, S. Roux. “Fracture of Disordered, Elastic Latices in Two Dimensions”. Physical Review B. Vol. 39. 1989. pp. 637-648.

S. Heyden, P. J. Gustafsson. “Simulation of Fracture in a Cellulose Fiber Network”. Journal of Pulp and Paper Science. Vol. 24. 1998. pp. 160-165.

A. M. Sastry, X. Cheng, W. Wang. “Mechanics of Stochastic Fibrous Networks”. Journal of Thermoplastic Composite Materials. Vol. 11. 1998. pp. 288-295.

S. Heyden. Network Modelling for the evaluation of Mechanical Properties of Cellulose Fiber Fluff. PhD. Thesis. Lund University, Division of Structural Mechanics. Lund. Sweden. 2000. pp. 177-180.

F. Ramirez, P. Heyliger. “Effective Mechanical Properties of Low Density Fiber Composites”. International Journal for Computational Methods in Engineering Science and Mechanics. Vol. 9. 2008. pp. 91-102.

L. T. Drzal, E. K. Drown. Johns-Manville Fiber/Binder Adhesión Measurements. Test Report. Michigan State University. USA. 2002. pp. 2-4.

Published

2010-01-22

How to Cite

Ramírez, F., Heyliger, P., Ramirez, G., & Tamasco, J. (2010). Computational simulation of low-density fibrous composites. Revista Facultad De Ingeniería Universidad De Antioquia, (54), 73–83. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/14167

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 > >> 

You may also start an advanced similarity search for this article.