Computational simulation of low-density fibrous composites
Keywords:
Monte Carlo simulation, effective properties, fibrous compositesAbstract
Low-density fibrous composites are composed of fibers, binder, and air, and exhibit mechanical properties that strongly depend upon the characteristics of the individual constituents. Three dimensional models are developed to predict the effective stiffness and strength of this type of composites. The predicted computational mechanical properties are compared to experimental values obtained for a glass-fiber composite with excellent agreement. Monte Carlo simulations were then performed to study the dependence of the composite effective stiffness on fiber diameter, length, orientation and mechanical properties. Results indicate that for a specific type of fiber and volume fraction, fiber orientation is the parameter determining the behavior of the composite effective stiffness.
Downloads
References
H. L. Cox. “The Elasticity and Strength of Paper and Other Fibrous Materials”. Journal of Applied Physics. Vol. 3. 1952. pp. 72-79.
J. A. Astrom, K. J. Niskanen. “Simulation of network fracture”. Proceedings of the 1991 International Paper Physics Conference. Ed. TAPPI. Atlanta (GA). 1991. pp. 31-47.
D. H. Page, R. Seth. “The Elastic Modulus of Paper II. The Importance of Fiber Modulus, Bonding, and Fiber Length”. TAPPI Journal. Vol. 63. 1980. pp.113-116.
C. W. Wang, L. Berhan, A. M. Sastry. “Structure, Mechanics and Failure of Stochastic Fibrous Networks: PartI – Microscale Considerations”. Journal of Engineering Materials and Technology. Vol. 122. 2000. pp. 450-459.
S. Arbabi, M. Sahimi. “Elastic Properties of Three Dimensional Percolation Networks with Stretching and Bond-Bending Forces”. Physical Review B. Vol. 38. 1988. pp. 7173-7176.
R. C. Hamlen. Paper Structures, Mechanics, and Permeability. Computer Aided Modeling. PhD. Thesis. University of Minessota. Minneapolis, Minessota. 1991. pp. 122-128.
D. C. Stahl, S. M. Cramer. “A Three Dimesional Network Model for a Low Density Fibrous Compose”. Journal of Engineering Materials and Technology. Vol. 120. 1998. pp. 126-130.
H. J. Herrmann, A. Hanson, S. Roux. “Fracture of Disordered, Elastic Latices in Two Dimensions”. Physical Review B. Vol. 39. 1989. pp. 637-648.
S. Heyden, P. J. Gustafsson. “Simulation of Fracture in a Cellulose Fiber Network”. Journal of Pulp and Paper Science. Vol. 24. 1998. pp. 160-165.
A. M. Sastry, X. Cheng, W. Wang. “Mechanics of Stochastic Fibrous Networks”. Journal of Thermoplastic Composite Materials. Vol. 11. 1998. pp. 288-295.
S. Heyden. Network Modelling for the evaluation of Mechanical Properties of Cellulose Fiber Fluff. PhD. Thesis. Lund University, Division of Structural Mechanics. Lund. Sweden. 2000. pp. 177-180.
F. Ramirez, P. Heyliger. “Effective Mechanical Properties of Low Density Fiber Composites”. International Journal for Computational Methods in Engineering Science and Mechanics. Vol. 9. 2008. pp. 91-102.
L. T. Drzal, E. K. Drown. Johns-Manville Fiber/Binder Adhesión Measurements. Test Report. Michigan State University. USA. 2002. pp. 2-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.