Study of major variables for the establishment of electrolytic plasma at low power

Authors

  • A. Gallegos Universidad de Concepción
  • C. Carrasco Universidad de Concepción
  • C. Camurri Universidad de Concepción
  • H. Pesenti Universidad de Concepción

Keywords:

Electrolytic plasma, high-voltage electrolytics, surface nanostructuring, nanograins, conductivity

Abstract


In this work, exploratory tests were carried out aimed at studying the variables that allow obtaining electrolytic plasma (PE) at low cell voltages and / or at low energy. For this, the electrolyte effects were studied, obtaining conditions that allow PE to be generated at less than 250 Vdc. The results show that the use of inert solutions with 1:12 or numerically lower and temperatures close to boiling correspond to the optimal ones to obtain plasma at low voltages. The nanograin electrode between 14 and 24 nm.

|Abstract
= 13 veces | PDF (ESPAÑOL (ESPAÑA))
= 11 veces|

Downloads

Download data is not yet available.

References

P. Gupta, G. Tenhundfeld, E. Daigle, D. Ryabkov. “Electrolytic plasma technology: science and engineering- an overview”. Surf Coat Tech. Vol. 201. 2007. pp. 8746.

E. Meletis, X. Nie, F. Wang, J. Jian. “Electrolytic plasma processing for cleaning and metal-coating of steel surface”. Surf Coat Tech. Vol. 150. 2002. pp. 246- 256.

T. Paulmier, J. Bell, P. Fredericks. “Deposition of nano-crystalline graphite films by cathodic plasma electrolysis”. Thin Solid Films. Vol. 515. 2007. pp. 2926-2934.

G. Sundararajan, L. Rama Krishna. “Mechanisms through the MAO coating technology”. Surf Coat Tech. Vol. 167. 2003. pp. 269-277.

J. Gao, A. Wang, Y. Li, Y. Fu, J. Wu, Y. Wang, Y. Wang. “Synthesis and characterization of superabsorbent plasma”. React Funct Polym. Vol. 68. 2008. pp. 1377- 1383.

Q. Lu, J. Yu, J. Gao. “Degradation of 2,4-dichlorophenol .J Hazard Mater. Nº. 136. 2006. pp. 526-531.

H. Kellogg. “Anode Effect in Aqueous Electrolysis”. J Electrochem Soc. Vol. 97. 1950. pp. 133.

A. Hickling, M. Ingram. “Contact glow-discharge electrolysis”. Trans Faraday Soc. Vol. 60. 1964. Pp. 183

D. Slovetskii, S. Terent’ ev. “Parameters of an Electric Discharge in Electrolytes and Physicochemical Processes in an Electrolyte Plasma”. High Energ Chem. Vol. 37. 2003. pp. 310.

C. Sillen, E. Barendrecht, L.anssen, S.van Stralen. . Int J Hydrog Energ. Vol. 7. 1982. pp. 577.

M. Boinet, D. Marlot, J. Lenain, S. Maximovitch, F. Dalard, R. Nogueira. “First results from coupled acousto-ultrasonics and electrochemical noise techniques applied to gas evolving electrode”. Electrochem Commun. Vol. 9. 2007. pp. 2174-2178.

E. Parfenov, A. Yerokhin, A. Matthews: “Frequency response studies for the plasma electrolytic oxidation process”. Surf Coat Tech. Vol. 201. 2007. pp. 8661- 8670.

A. Maximov, A. Khlustova. “Optical emission from plasma discharge in electrochemical systems applied . Surf Coat Tech. Vol. 201. 2007. pp. 8782-8788. electrolysis”. Electrochim Acta. Vol. 56. 2010. pp. 925.

X. Ji, X. Wang, J. Yue, Y. Cai, H. Zhang. “ The effect of electrolyte constituents on contact glow discharge electrolysis”. Electrochim Acta. Vol. 56. 2010. Pp. 925.

Published

2013-01-22

How to Cite

Gallegos, A., Carrasco, C., Camurri, C., & Pesenti, H. (2013). Study of major variables for the establishment of electrolytic plasma at low power . Revista Facultad De Ingeniería Universidad De Antioquia, (65), 7–15. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/14171