Unidades Hounsfield como instrumento para la evaluación de la desmineralización ósea producida por el uso de exoprótesis

Autores/as

  • Juan Fernando Ramírez Patiño Universidad Nacional de Colombia
  • Jésica Andrea Isaza Universidad Nacional de Colombia
  • Isabela Mariaka Universidad Nacional de Colombia
  • Jaime Andrés Vélez Zea Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.15232

Palabras clave:

fémur, amputado transfemoral, densidad mineral, stress shielding

Resumen

Se realizó una comparación entre tres histogramas de Unidades Hounsfield (HU) generados a partir de imágenes obtenidas por tomografía axial computarizada (TAC) en diferentes partes de los fémures de amputados transfemorales unilaterales (cuello de la cabeza femoral, metáfisis, diáfisis). Los resultados muestran que hay una diferencia estadística significativa (p-value<0,05) entre las HU, en consecuencia también en la densidad mineral de los huesos amputado y sano del mismo individuo. La diferencia demuestra que el uso de exoprótesis genera desmineralización ósea, la cual está relacionada con el fenómeno de stress shielding.

|Resumen
= 208 veces | PDF
= 53 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Juan Fernando Ramírez Patiño, Universidad Nacional de Colombia

Facultad de Minas.

Jésica Andrea Isaza, Universidad Nacional de Colombia

Facultad de Minas.

Isabela Mariaka, Universidad Nacional de Colombia

Facultad de Minas.

Jaime Andrés Vélez Zea, Universidad de Antioquia

Facultad de Ingeniería.

Citas

C. Coolens, P. Childs, ìCalibration of CT HounsÆ eld units for radiotherapy treatment planning of patients with metallic hip prostheses: the use of the extended CT-scaleî. Phys Med Biol. Vol. 48, No. 11, Jun. 2003, pp. 1591-1603. DOI: https://doi.org/10.1088/0031-9155/48/11/308

www.TSID.net radiologia. [Online]. Available: http://www.tsid.net/tac/fundamentos.htm. [Accessed: 29-Jun-2012].

L. Duchemin, V. Bousson, C. Raossanaly, C. Bergot, J. Laredo, W. Skalli, D. Mitton, ìPrediction of mechanical properties of cortical bone by quantitative computed tomography,î Med Eng Phys, Vol. 30, No. 3, Apr. 2008. pp. 321-328. DOI: https://doi.org/10.1016/j.medengphy.2007.04.008

J. Currey. ìPhysical characteristics affecting the tensile failure properties of compact bone.î J Biomech, Vol. 23, No. 8, 1990. pp. 837-844. DOI: https://doi.org/10.1016/0021-9290(90)90030-7

R. Martin, J. Ishida. ìThe relative effects of collagen Æ ber orientation, porosity, density, and mineralization on bone strength.î Journal of Biomechanics. Vol. 22, No. 5. 1989. pp. 419-426. DOI: https://doi.org/10.1016/0021-9290(89)90202-9

M. SchafØ er, D. Burr. ìStiffness of compact bone: Effects of porosity and density.î Journal of Biomechanics. Vol. 21, No. 1, 1988, pp. 13-16. DOI: https://doi.org/10.1016/0021-9290(88)90186-8

P. Roschger, E. Paschalis, P. Fratzl, K. Klaushofer, ìBone mineralization density distribution in health and disease,î Bone. Vol. 42. 2008. pp. 456-466. DOI: https://doi.org/10.1016/j.bone.2007.10.021

T. Keaveny, E. Morgan, G. Niebur, O. Yeh, ìBiomechanics of trabecular bone,î Annu Rev Biomed Eng. Vol. 3. 2001. pp. 307ñ333. DOI: https://doi.org/10.1146/annurev.bioeng.3.1.307

E. Morgan and T. Keaveny, ìDependence of yield strain of human trabecular bone on anatomic site,î J Biomech. Vol. 34. 2001. pp. 569-577. DOI: https://doi.org/10.1016/S0021-9290(01)00011-2

B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. BrynjÛlfsson, M. Viceconti. ìMathematical relationships between bone density and mechanical properties: a literature review,î Clin Biomech (Bristol, Avon). Vol. 23. 2008. p. 135-146. DOI: https://doi.org/10.1016/j.clinbiomech.2007.08.024

M. Joshi, S. Advani, F. Miller, M. Santare, ìAnalysis of a femoral hip prosthesis designed to reduce stress shielding.î J Biomech. Vol. 33. 2000. pp. 1655-1662. DOI: https://doi.org/10.1016/S0021-9290(00)00110-X

T. Kaneko, J. Bell, M. Pejcic, J. Tehranzadeh, J. Keyak, ìMechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases.î J Biomech. Vol. 37. 2004. pp. 523-530. DOI: https://doi.org/10.1016/j.jbiomech.2003.08.010

S. Pettersen, T. Wik, B. Skallerud, ìSubject speciÆ c Æ nite element analysis of stress shielding around a cementless femoral stem.î Clin Biomech (Bristol, Avon). Vol. 24. 2009. pp. 196-202. DOI: https://doi.org/10.1016/j.clinbiomech.2008.11.003

A. Completo, P. Talaia, F. Fonseca, J. Simıes. ìRelationship of design features of stemmed tibial knee prosthesis with stress shielding and end-of-stem pain.î Materials & Design. Vol. 30. 2009. pp. 1391-1397. DOI: https://doi.org/10.1016/j.matdes.2008.06.071

C. Engh, J. Bobyn. Biological Fixation in Total Hip Arthroplasty. illustrated ed. Slack, 1985.

C. Engh, J. Bobyn, A. Glassman. ìPorous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results.î J Bone Joint Surg Br. Vol. 69. 1987. pp. 45-55. DOI: https://doi.org/10.1302/0301-620X.69B1.3818732

J. Wolff. Das Gesetz der Transformation der Knochen: Hirschwald, Berlin 1892 - Reprint 300 Seiten - Mit vier Nachworten und historischen Dokumenten. 1, AuØ age. Pro Business, 2010.

K. Tsubota, Y. Suzuki, T. Yamada, M. Hojo, A. Makinouchi, T. Adachi. ìComputer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolffís law.î Journal of Biomechanics. Vol. 42. 2009. pp. 1088-1094. DOI: https://doi.org/10.1016/j.jbiomech.2009.02.030

A. Taiji, T. Yoshihiro, S. Hiroshi, T. Masao. ìSimulation of Trabecular Surface Remodeling based on Local

F. Gerhard, D. Webster, G. van Lenthe, R. M ̧ller. ìIn silico biology of bone modelling and remodelling: adaptation.î Philos Transact A Math Phys Eng Sci. Vol. 367. 2009. pp. 2011-2030. DOI: https://doi.org/10.1098/rsta.2008.0297

J. Bobyn, E. Mortimer, A. Glassman, C. Engh, J. Miller, C. Brooks. ìProducing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty.î Clin. Orthop. Relat. Res., No. 274. 1992. pp. 79-96. DOI: https://doi.org/10.1097/00003086-199201000-00010

X. Jia, M. Zhang, X. Li, W. C. Lee. ìA quasi-dynamic nonlinear Æ nite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees.î Clinical Biomechanics. Vol. 20. 2005. pp. 630-635. DOI: https://doi.org/10.1016/j.clinbiomech.2005.03.001

M. Zhang C. Roberts. ìComparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket.î Med Eng Phys. Vol. 22. 2000. pp. 607-612. DOI: https://doi.org/10.1016/S1350-4533(00)00079-5

M. Zhang, M. Lord, A. Turner-Smith, V. Roberts. ìDevelopment of a non-linear Æ nite element modelling of the below-knee prosthetic socket interface.î Med Eng Phys. Vol. 17. 1995. pp. 559-566. DOI: https://doi.org/10.1016/1350-4533(95)00002-5

C. Lin, C. Chang, C. Wu, K. Chung, I. Liao. ìEffects of liner stiffness for trans-tibial prosthesis: a finite element contact model.î Med Eng Phys. Vol. 26. 2004. pp. 1ñ9. DOI: https://doi.org/10.1016/S1350-4533(03)00127-9

S. Zachariah J. Sanders. ìFinite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact.î J Biomech. Vol. 33. 2000. pp. 895-899. DOI: https://doi.org/10.1016/S0021-9290(00)00022-1

W. Lee, M. Zhang, X. Jia, J. Cheung. ìFinite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.î Med Eng Phys. Vol. 26. 2004. pp. 655-662. DOI: https://doi.org/10.1016/j.medengphy.2004.04.010

S. Portnoy, I. Siev, N. Shabshin, A. Kristal, Z. Yizhar, A. Gefen. ìPatient-speciÆ c analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users.î J Biomech. Vol. 42. 2009. pp. 2686-2693. DOI: https://doi.org/10.1016/j.jbiomech.2009.08.019

X. Jia, M. Zhang, W. Lee, ìLoad transfer mechanics between trans-tibial prosthetic socket and residual limbódynamic effects.î Journal of Biomechanics. Vol. 37. 2004. pp. 1371-1377. DOI: https://doi.org/10.1016/j.jbiomech.2003.12.024

S. Portnoy, G. Yarnitzky, Z. Yizhar, A. Kristal, U. Oppenheim, I. Siev-Ner, A. Gefen. ìReal-Time Patient-SpeciÆ c Finite Element Analysis of Internal Stresses in the Soft Tissues of a Residual Limb: A New Tool for Prosthetic Fitting.î Annals of Biomedical Engineering. Vol. 35. pp. 2007. 120-135. DOI: https://doi.org/10.1007/s10439-006-9208-3

M. Faustini, R. Neptune, R. Crawford. ìThe quasi-static response of compliant prosthetic sockets for transtibial amputees using Æ nite element methods.î Med Eng Phys. Vol. 28. 2006. pp. 114-121. DOI: https://doi.org/10.1016/j.medengphy.2005.04.019

W. Lee M. Zhang. ìUsing computational simulation to aid in the prediction of socket Æ t: a preliminary study.î Med Eng Phys. Vol. 29. 2007. pp. 923-929. DOI: https://doi.org/10.1016/j.medengphy.2006.09.008

Z. Yosibash, N. Trabelsi, C. Milgrom. ìReliable simulations of the human proximal femur by high-order Æ nite element analysis validated by experimental observations.î J Biomech. Vol. 40. 2007. pp. 3688-3699. DOI: https://doi.org/10.1016/j.jbiomech.2007.06.017

J. S·nchez. Biomecánica de la marcha humana normal y patológica. Instituto de Biomec·nica. IMPIVA Generalitat Valenciana. Valencia, EspaÒa. 2005.

Descargas

Publicado

2013-05-06

Cómo citar

Ramírez Patiño, J. F., Isaza, J. A., Mariaka, I., & Vélez Zea, J. A. (2013). Unidades Hounsfield como instrumento para la evaluación de la desmineralización ósea producida por el uso de exoprótesis. Revista Facultad De Ingeniería Universidad De Antioquia, (66), 159–167. https://doi.org/10.17533/udea.redin.15232

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede {advancedSearchLink} para este artículo.