Hounsfield units as a tool for the evaluation of bone demineralization due to exoprosthesis use
DOI:
https://doi.org/10.17533/udea.redin.15232Keywords:
femur, transfemoral amputee, mineral density, stress shieldingAbstract
A comparison between the healthy bone and the amputated bone of twenty unilateral transfemoral amputees was done by generating three Hounsfiled Unit (HU) histograms at different parts of the femur (femoral head neck, metaphysis and diaphysis), based on images obtained by Computer Axial Tomography. The results show a significant statistical difference (p-value<0.05) of HU, which is reflected by the bone mineral density between the bones of amputated and healthy limb. These differences demonstrate that the exoprosthesis use, generates bone demineralization which is also related with stress shielding phenomenon.
Downloads
References
C. Coolens, P. Childs, ìCalibration of CT HounsÆ eld units for radiotherapy treatment planning of patients with metallic hip prostheses: the use of the extended CT-scaleî. Phys Med Biol. Vol. 48, No. 11, Jun. 2003, pp. 1591-1603. DOI: https://doi.org/10.1088/0031-9155/48/11/308
www.TSID.net radiologia. [Online]. Available: http://www.tsid.net/tac/fundamentos.htm. [Accessed: 29-Jun-2012].
L. Duchemin, V. Bousson, C. Raossanaly, C. Bergot, J. Laredo, W. Skalli, D. Mitton, ìPrediction of mechanical properties of cortical bone by quantitative computed tomography,î Med Eng Phys, Vol. 30, No. 3, Apr. 2008. pp. 321-328. DOI: https://doi.org/10.1016/j.medengphy.2007.04.008
J. Currey. ìPhysical characteristics affecting the tensile failure properties of compact bone.î J Biomech, Vol. 23, No. 8, 1990. pp. 837-844. DOI: https://doi.org/10.1016/0021-9290(90)90030-7
R. Martin, J. Ishida. ìThe relative effects of collagen Æ ber orientation, porosity, density, and mineralization on bone strength.î Journal of Biomechanics. Vol. 22, No. 5. 1989. pp. 419-426. DOI: https://doi.org/10.1016/0021-9290(89)90202-9
M. SchafØ er, D. Burr. ìStiffness of compact bone: Effects of porosity and density.î Journal of Biomechanics. Vol. 21, No. 1, 1988, pp. 13-16. DOI: https://doi.org/10.1016/0021-9290(88)90186-8
P. Roschger, E. Paschalis, P. Fratzl, K. Klaushofer, ìBone mineralization density distribution in health and disease,î Bone. Vol. 42. 2008. pp. 456-466. DOI: https://doi.org/10.1016/j.bone.2007.10.021
T. Keaveny, E. Morgan, G. Niebur, O. Yeh, ìBiomechanics of trabecular bone,î Annu Rev Biomed Eng. Vol. 3. 2001. pp. 307ñ333. DOI: https://doi.org/10.1146/annurev.bioeng.3.1.307
E. Morgan and T. Keaveny, ìDependence of yield strain of human trabecular bone on anatomic site,î J Biomech. Vol. 34. 2001. pp. 569-577. DOI: https://doi.org/10.1016/S0021-9290(01)00011-2
B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. BrynjÛlfsson, M. Viceconti. ìMathematical relationships between bone density and mechanical properties: a literature review,î Clin Biomech (Bristol, Avon). Vol. 23. 2008. p. 135-146. DOI: https://doi.org/10.1016/j.clinbiomech.2007.08.024
M. Joshi, S. Advani, F. Miller, M. Santare, ìAnalysis of a femoral hip prosthesis designed to reduce stress shielding.î J Biomech. Vol. 33. 2000. pp. 1655-1662. DOI: https://doi.org/10.1016/S0021-9290(00)00110-X
T. Kaneko, J. Bell, M. Pejcic, J. Tehranzadeh, J. Keyak, ìMechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases.î J Biomech. Vol. 37. 2004. pp. 523-530. DOI: https://doi.org/10.1016/j.jbiomech.2003.08.010
S. Pettersen, T. Wik, B. Skallerud, ìSubject speciÆ c Æ nite element analysis of stress shielding around a cementless femoral stem.î Clin Biomech (Bristol, Avon). Vol. 24. 2009. pp. 196-202. DOI: https://doi.org/10.1016/j.clinbiomech.2008.11.003
A. Completo, P. Talaia, F. Fonseca, J. Simıes. ìRelationship of design features of stemmed tibial knee prosthesis with stress shielding and end-of-stem pain.î Materials & Design. Vol. 30. 2009. pp. 1391-1397. DOI: https://doi.org/10.1016/j.matdes.2008.06.071
C. Engh, J. Bobyn. Biological Fixation in Total Hip Arthroplasty. illustrated ed. Slack, 1985.
C. Engh, J. Bobyn, A. Glassman. ìPorous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results.î J Bone Joint Surg Br. Vol. 69. 1987. pp. 45-55. DOI: https://doi.org/10.1302/0301-620X.69B1.3818732
J. Wolff. Das Gesetz der Transformation der Knochen: Hirschwald, Berlin 1892 - Reprint 300 Seiten - Mit vier Nachworten und historischen Dokumenten. 1, AuØ age. Pro Business, 2010.
K. Tsubota, Y. Suzuki, T. Yamada, M. Hojo, A. Makinouchi, T. Adachi. ìComputer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolffís law.î Journal of Biomechanics. Vol. 42. 2009. pp. 1088-1094. DOI: https://doi.org/10.1016/j.jbiomech.2009.02.030
A. Taiji, T. Yoshihiro, S. Hiroshi, T. Masao. ìSimulation of Trabecular Surface Remodeling based on Local
F. Gerhard, D. Webster, G. van Lenthe, R. M ̧ller. ìIn silico biology of bone modelling and remodelling: adaptation.î Philos Transact A Math Phys Eng Sci. Vol. 367. 2009. pp. 2011-2030. DOI: https://doi.org/10.1098/rsta.2008.0297
J. Bobyn, E. Mortimer, A. Glassman, C. Engh, J. Miller, C. Brooks. ìProducing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty.î Clin. Orthop. Relat. Res., No. 274. 1992. pp. 79-96. DOI: https://doi.org/10.1097/00003086-199201000-00010
X. Jia, M. Zhang, X. Li, W. C. Lee. ìA quasi-dynamic nonlinear Æ nite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees.î Clinical Biomechanics. Vol. 20. 2005. pp. 630-635. DOI: https://doi.org/10.1016/j.clinbiomech.2005.03.001
M. Zhang C. Roberts. ìComparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket.î Med Eng Phys. Vol. 22. 2000. pp. 607-612. DOI: https://doi.org/10.1016/S1350-4533(00)00079-5
M. Zhang, M. Lord, A. Turner-Smith, V. Roberts. ìDevelopment of a non-linear Æ nite element modelling of the below-knee prosthetic socket interface.î Med Eng Phys. Vol. 17. 1995. pp. 559-566. DOI: https://doi.org/10.1016/1350-4533(95)00002-5
C. Lin, C. Chang, C. Wu, K. Chung, I. Liao. ìEffects of liner stiffness for trans-tibial prosthesis: a finite element contact model.î Med Eng Phys. Vol. 26. 2004. pp. 1ñ9. DOI: https://doi.org/10.1016/S1350-4533(03)00127-9
S. Zachariah J. Sanders. ìFinite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact.î J Biomech. Vol. 33. 2000. pp. 895-899. DOI: https://doi.org/10.1016/S0021-9290(00)00022-1
W. Lee, M. Zhang, X. Jia, J. Cheung. ìFinite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.î Med Eng Phys. Vol. 26. 2004. pp. 655-662. DOI: https://doi.org/10.1016/j.medengphy.2004.04.010
S. Portnoy, I. Siev, N. Shabshin, A. Kristal, Z. Yizhar, A. Gefen. ìPatient-speciÆ c analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users.î J Biomech. Vol. 42. 2009. pp. 2686-2693. DOI: https://doi.org/10.1016/j.jbiomech.2009.08.019
X. Jia, M. Zhang, W. Lee, ìLoad transfer mechanics between trans-tibial prosthetic socket and residual limbódynamic effects.î Journal of Biomechanics. Vol. 37. 2004. pp. 1371-1377. DOI: https://doi.org/10.1016/j.jbiomech.2003.12.024
S. Portnoy, G. Yarnitzky, Z. Yizhar, A. Kristal, U. Oppenheim, I. Siev-Ner, A. Gefen. ìReal-Time Patient-SpeciÆ c Finite Element Analysis of Internal Stresses in the Soft Tissues of a Residual Limb: A New Tool for Prosthetic Fitting.î Annals of Biomedical Engineering. Vol. 35. pp. 2007. 120-135. DOI: https://doi.org/10.1007/s10439-006-9208-3
M. Faustini, R. Neptune, R. Crawford. ìThe quasi-static response of compliant prosthetic sockets for transtibial amputees using Æ nite element methods.î Med Eng Phys. Vol. 28. 2006. pp. 114-121. DOI: https://doi.org/10.1016/j.medengphy.2005.04.019
W. Lee M. Zhang. ìUsing computational simulation to aid in the prediction of socket Æ t: a preliminary study.î Med Eng Phys. Vol. 29. 2007. pp. 923-929. DOI: https://doi.org/10.1016/j.medengphy.2006.09.008
Z. Yosibash, N. Trabelsi, C. Milgrom. ìReliable simulations of the human proximal femur by high-order Æ nite element analysis validated by experimental observations.î J Biomech. Vol. 40. 2007. pp. 3688-3699. DOI: https://doi.org/10.1016/j.jbiomech.2007.06.017
J. S·nchez. Biomecánica de la marcha humana normal y patológica. Instituto de Biomec·nica. IMPIVA Generalitat Valenciana. Valencia, EspaÒa. 2005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.