State estimation technique for a planetary robotic rover


  • Jamshed Iqbal Aalto University
  • Misbahur Rehman-Saad Aalto University
  • Ahmad Mahmood-Tahir National University of science and Technology
  • Ahsan Malik Institute of Information Technology



state estimation, planetary exploration, Extended Kalman Filter, mobile rovers


Given the long traverse times and severe environmental constraints on a planet like Mars, the only option feasible now is to observe and explore the planet through more sophisticated planetary rovers. To achieve increasingly ambitious mission objectives under such extreme conditions, the rovers must have autonomy. Increased autonomy, obviously, relies on the quality of estimates of rover's state i.e. its position and orientation relative to some starting frame of reference. This research presents a state estimation approach based on Extended Kalman Filter (EKF) to fuse distance from odometry and attitude from an Inertial Measurement Unit (IMU), thus mitigating the errors generated by the use of either system alone. To simulate a Sun-sensor based approach for absolute corrections, a magnetic compass was used to give absolute heading updates. The technique was implemented on MotherBot, a custom-designed skid steered rover. Experimental results validate the application of the presented estimation strategy. It showed an error range within 3% of the distance travelled as compared to about 8% error obtained from direct fusion.

= 273 veces | PDF (ESPAÑOL (ESPAÑA))
= 46 veces|


Download data is not yet available.

Author Biographies

Jamshed Iqbal, Aalto University

Research Assistant Professor and Head of Robotics and Control Research (RCR) Group. Department of Electrical Engineering and Automation.


Misbahur Rehman-Saad, Aalto University

Department of Electrical Engineering and Automation.

Ahmad Mahmood-Tahir, National University of science and Technology

Postgraduate Programs Directorate.

Ahsan Malik, Institute of Information Technology

Research Assistant Professor at Department of Electrical Engineering, COMSATS.


Tavera, M., Lengerke, O. & Dutra, M. (2011). Comparative study for chaotic behaviour in fire fighting robot. Rev. Fac. Ing. Univ. Antioquia, 60, 31- 41.

Khan, A., Riaz, S. & Iqbal, J. (2013). Surface estimation of a pedestrian walk for outdoor use of power wheelchair based robot. Life Sci J., 10(3), 1697- 1704.

Ali, K., Vanelli, C., Biesiadecki, J., Maimone, M., Cheng, Y., Martin, A. & Alexander, J. (2005). Attitude and position estimation on the Mars exploration rovers. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Hawaii, USA. 2005. pp. 20-27.

J. Hidalgo, P. Pantelis, J. Kohler, J. Del-Cerro, A. Barrientos. “Improving planetary rover attitude estimation via MEMS sensor characterization”. Sensors. Vol. 12. 2012. 2219-2235

F. Azizi, N. Houshangi. Mobile robot position determination using data from gyro and odometry. Proceedings of the Canadian Conference on Electrical and Computer Engineering. Ontario, Canada 2004. pp. 719-722.

M. Thein, D. Quinn, D. Folta. Celestial Navigation (CelNav): Lunar surface navigation. Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibition. Hawaii, USA. 2008. DOI: 10.2514/6.2008-6759. Available on:

P. Benjamin. “Celestial navigation on the surface of Mars”. NASA STI/Recon Technical Report. ADA392455; USNA-1531-2. Vol. 1. 34 pages. 2001. Naval Academy. Annapolis, USA. Available on: Accessed: July, 2014.

J. Gammell, C. Tong, P. Berczi, S. Anderson, T. Barfoot, J. Enright. Rover odometry aided by a star tracker. Proceedings of the IEEE Aerospace Conference. Montana, USA. 2013. pp. 1-10.

M. McClelland, M. Campbell, T. Estlin. Qualitative relational mapping for planetary rovers. Proceedings of Workshop on Intelligent Robotic Systems AAAI. Washington, USA. 2013. pp. 110-113.

M. Saad. State estimation technique for a planetary rover. Thesis Helsinki University of Technology. Espoo, Finland. 2007. pp 1-65. Available on online at Accessed: July, 2014.

E. Baumgartner, H. Aghazarian, A.Trebi. Rover localization results for the FIDO rover. Proceedings of the SPIE 4571, Sensor Fusion and Decentralized Control in Robotic Systems IV. Boston, USA. 2001. pp. 34-44.

J. Iqbal, S. Heikkilä, A. Halme. Tether tracking and control of ROSA robotic rover. Proceedings of IEEE International Conference on Control, Automation, Robotics and Vision. Hanoi, Vietnam. 2008. pp. 689- 693.

J. Iqbal. Tether tracking and control of ROSA robotic rover. Thesis Helsinki University of Technology. Espoo, Finland. 2007. pp. 1-93. Available on: at http:// Accessed: October 27, 2013.

J. Hakenberg. Mobility and autonomous reconfiguration of Marsokhod. Thesis Helsinki University of Technology, Espoo, Finland. 2008. pp. 1-58. Available on: Accessed: October 27, 2013.

J. Iqbal, S. Riaz, A. Khan, H. Khan. “A novel trackdrive mobile robotic framework for conducting projects on robotics and control systems”. Life Sci .Vol. 10. 2013. pp. 130-137.



How to Cite

Iqbal, J. ., Rehman-Saad, M. ., Mahmood-Tahir, A. ., & Malik, A. . (2014). State estimation technique for a planetary robotic rover. Revista Facultad De Ingeniería Universidad De Antioquia, (73), 58–68.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

You may also start an advanced similarity search for this article.