A new reaction rate constant for char combustion- formulation


  • Andrés Rojas Universidad Nacional de Colombia
  • Juan Barraza Universidad del Valle
  • Richelieu Barranco University of Nottingham


Char, combustion model, reaction rate constant, intrinsic reactivity


This paper shows the development and formulation of a new reaction rate constant of combustion for pulverized coal. The chemical reaction rate was considered as a function of coal intrinsic reactivity and fuel mass for a reaction order n. The equation for reaction rate constant was developed by dimensional analysis using the Rayleigh method. This equation is new, dimensionless and shows the dependency of the chemical reactivity on coal parameters such as maceral and mineral composition; char parameters, including specify surface area and apparent density, devolatilization time, temperature, and activation energy. The reaction rate constant model presents dimensional consistency and it is described by three dimensionless numbers having physical or chemical significance.

= 17 veces | PDF (ESPAÑOL (ESPAÑA))
= 10 veces|


Download data is not yet available.

Author Biographies

Andrés Rojas, Universidad Nacional de Colombia

Sede Palmira

Juan Barraza, Universidad del Valle

ciudadela Melendez, Escuela de Ingeniería Química

Richelieu Barranco, University of Nottingham

Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering


H. H. Van-Krevelen, F. J. Huntgens. Fuel. Vol. 30. 1951. pp. 253-258.

H. Kobayashi., J. B. Howard, A. F. Salofim. Sixteenth Symposium (International) on Combustion. The Com-bustion Institute. Pittsburg. PA. 1977. pp. 411-414.

D. B. Anthony, J. B. Howard, H.C. Hottel, H.P. Meis¬sner. “Rapid devolatilization of pulverized coal”. Fif-teenth Symposium (International) on Combustion. The Combustion Institute. Pittsburgh. PA. 1974. pp. 1303-1306.

D. Smoot, P. Smith. “Modeling pulverized-coal reac¬tion processes”. Pulverized-Coal Combustion and Gasification: Theory and Applications for Continuous Flow Processes. Smoot L.D. and David Pratt (Ed.), Plenum Press, New York and London. 1979. pp. 217-232.

R. Bassilakis, Y. Zhao, P. R. Solomon, M. A. Serio. “Sulfur and nitrogen evolution in the argonne coals: experiment and modeling”. Energy & Fuels. Vol. 7. 1993. pp. 710-720.

D. Grant, R. Pugmire, T. Fletcher, A. Kerstein. “Che¬mical model of coal devolatilization using percolation lattice statistics”. Energy & Fuels. Vol. 3. 1989. pp. 175-186.

B. Brewster, D. Smoot, S. Barthelson, D. Thornock. “Model comparisons with drop tube combustion data for various devolatilization submodels”. Energy & Fuels. Vol. 9. 1995 pp. 870-879.

S. P. Visona, B. R. Stanmore. “Modeling NO, relea¬se from a single coal particle. I. formation of no from volatile nitrogen”. Combustion and Flame. Vol. 105. 1996. pp. 92-103.

M.-L.Chan, J. M. Jones, M. Pourkashanian, A. Willia¬ms. “The oxidative reactivity of coal chars in relation to their structure”. Fuel. Vol. 78. 1999. pp. 1539-1552.

H. Nogami. Advanced Energy Conversion Systems. N. Arai, S. Churchill (Eds). 2000. pp. 167-168.

A. Williams, M. Pourkashanian, J. M. Jones. “Com¬bustion of pulverised coal and biomass”. Progress in Energy and Combustion Science. Vol. 27. 2001. pp.587-610.

R. H. Hurt, J. M. Calo. “Semi-global intrinsic kinetics for char combustion modeling”. Combustion and Fla¬me. Vol. 125. 2001. pp. 1138-1149.

R. Essenhigh. “Fundamental of coal combustion”. Chemistry of coal utilization, second supplementary volume. M.A. Elliott (Ed.). John Wiley & Sons. New York. 1981. pp. 1153-1311.

A. Williams, R. Backreedy, R. Habib, J. M. Jones, M. Pourkashanian. “Modeling coal combustion: the cu¬rrent position”. Fuel. Vol. 81. 2002. pp. 605-618.

T. Miura. “Advanced coal combustion”. N. Arai, S. Churchill (Eds). Advanced Energy Conversion Syste¬ms. 2000. pp. 153-169.

R. Backreedy. Modelling the combustion of pulve¬rized coal. PhD Thesis, University of Leeds. United Kingdom. 2002.

M. Urhán. “Mejora de la eficiencia de la combustión de carbones utilizados en el Valle del Cauca mediante un estudio previo de su reactividad”. Informe final pre¬sentado a ECOCARBON – COLCIENCIAS. Universi¬dad del Valle, Cali, Colombia. 2000.

E. M. Suuberg, I. Aarna, I. Külaots, M. Callejo, R. H. Hurt. “Development of porosity during coal char com¬bustion and gasification”. Proceedings of the 11th Interna¬tional Conference on Coal. San Francisco. USA. 2001.

R. H. Hurt, J. M. Calo. “Semi-global intrinsic kinetics for char combustion”. Proceedings of the 11th International Conference on Coal Science. San Francisco. USA. 2001.

M. A. Field, D. W. Gill, B. B. Morgan, G. W Hawks¬ley. “The combustion pulverised coal”. Leatherhead BCURA. 1969. pp. 86-92.

M. M. Baum, P.J. Stree. “Predicting the combustion behavior of coal particle”. Combustion science and te¬chnology. Vol. 3. 1971. pp. 231-243.

I. W. Smith. Nineteenth Symp. Combustion rates of coal chars: a review. Symposium (International) on Combustión. The Combustion Institute, Pittsburgh, 1982, pp. 1045-1065.

A. Williams, M. Pourkashanian, P. Bysh, J. Norman. “Modeling of coal combustion in low-NOx p.f. fla¬mes”. Fuel. Vol. 73. 1994. pp. 1006-1019.

R. I. Backreedy, R. Habib J. M. Jones, M. Pourkas¬hanian, A. Williams. “An extended coal combustion model”. Fuel. Vol. 78. 1999. pp. 1745-1754.

E. Hampartsoumian, M. Pourkashanian, A. Williams. “Combustion rate of char and carbonaceous residues”. Journal of the Institute of Energy. 1989. pp. 48-56.

R. B.Jones, C. B. McCourt, C. Morley, K. King. “Ma¬ceral and rank influences on the morphology of coal char”. Fuel. Vol. 64. 1985. pp. 1460-1467.

R. Sahu, Y. Levendis, R. Flagan, G. Gavalas. “Physical properties and oxidation rates of chars from three bitu¬minous coals”. Fuel. Vol. 67. 1988. pp. 275-283.

H. Y. Cai, R. Messenbock, M. Dix, D. R. Dugwell, R. Kandiyoti. “Pyrolysis of coal maceral concentrates un-der pf-combustion conditions (I): changes in volatile release and char combustibility as a function of rank”. Fuel. Vol. 77. 1998. No. 12. pp. 1273-1282.

J. Milligan, M. Thomas, J. Crelling. “Temperature-programmed combustion studies of coal and maceral group concentrates”. Fuel. Vol. 73. 1997. pp. 1249-1255

Z. Xiaoke, C. Caixia, S. Xuexin, Z. Yujian. “Maceral and rank influences on the morphology and reactivity of coal char”. International Conference on Coal Scien¬ce. 1995. pp. 307-310.

M. Cloke, E. Lester. “Characterization of coals for combustion using petrographic analysis: a review”. Fuel. Vol. 73. 1994. pp. 315–320.

J. W. Cumming, J. McLaughlin. “The thermogravime¬tric behaviour of coal”. Thermochimica Acta. Vol. 57. 1982. pp. 253-272.

J. W. Cumming. “Reactivity assessment of coal via weighted mean activation energy”. Fuel. Vol. 63. 1984. pp. 1436-1440.

R. Perry, D. W. Green, J. O. Maloney. Perry’s Che¬mical Engineers’ Handbook. 6ª ed. Vol. 2. 1992. pp. 2-120.

C. G. Thomas, M. Shibaoka, E. Gawronski, M. E. Gos¬nell, D. Pong-Anant, L. F. Brunckhorst, M.R. Salehi. “Swelling and plasticity of inertinite in pf combustion”. Proceedings of the 1989 International Conference on Coal Science. NEDO. Tokyo. 1989. pp. 213-216.

C. G. Thomas, M. Shibaoka, D. Pong-anant, E. Gawronski, M. E. Gosnell. “Determination of percen¬tage reactive under pf combustion conditions”. Pro¬ceedings of the 1991 International Conference on Coal Science. United Kingdom. 1991. pp. 48-51.

O. Levenspiel. Ingeniería de las Reacciones Químicas. 3 ed. Jhon Wiley & Sons. New York. 2004. pp. 27-28.



How to Cite

Rojas, A., Barraza, J., & Barranco, R. (2013). A new reaction rate constant for char combustion- formulation. Revista Facultad De Ingeniería Universidad De Antioquia, (45), 7–16. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/17961