Caracterización morfológica del carbonizado de carbones pulverizados: estado del arte

Autores/as

  • Andrés Rojas Universidad Nacional de Colombia
  • Juan Barraza Universidad del Valle

DOI:

https://doi.org/10.17533/udea.redin.19017

Palabras clave:

Desvolatilización, tipo de carbonizado, carbón pulverizado.

Resumen

El carbonizado es el residuo sólido que resulta de la extracción de la materia volátil del carbón a altas temperaturas, en atmósfera inerte y cortos tiempo de residencia (proceso de desvolatilización). La desvolatilización generalmente se lleva a cabo en reactores de lecho fluidizado, reactores tubulares de caída o en mallas eléctricas. Las condiciones de operación como tipo de atmósfera, velocidad de calentamiento, temperatura y presión en estos equipos, junto con las características del carbón como el rango, composición petrográfica y tipo de microlitotipos, generan cambios morfológicos en la estructura del carbonizado produciendo diferentes tipos de residuo sólido. Estas diferencias morfológicas afectan en forma directa las características del proceso de combustión. En este artículo se presenta el desarrollo histórico de la clasificación de las diferentes morfologías de carbonizados, las cuales inicialmente fueron realizadas en forma manual y actualmente se lleva a cabo por medio de análisis de imagen en forma automática. Se encontró que hay diferencias en las clasificaciones reportadas en la literatura, por lo cual la International Committee for Coal and Organic Petrology (ICCP) presenta un sistema de clasificación unificado.

|Resumen
= 172 veces | PDF
= 55 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Citas

D.W. Van-krevelen. COAL: Typology, Physics, Chemis-try Constitution. 3.a ed. Elsevier Science Publishers B.V. 1961.

S. Rastogi, G.E. Klinzing, W.M. Proscia. “Morphological characterization of coal under rapid heating Devolatilization”. Powder Technology. Vol. 88. 1996. pp. 143-154. DOI: https://doi.org/10.1016/0032-5910(96)03111-7

A. G. Borrego, G.Marbán, M.J.G. Alonso, D. Álvarez, R. Menéndez. “Maceral effects in the determination of proximate volatiles in coals” Energy & Fuel. Vol. 14. 2000. pp. 117-126. DOI: https://doi.org/10.1021/ef990050t

G. De la Puente, M. J. Iglesias, E. Fuente, J.J. Pis. “Changes in the structure of coals of different rank due to oxidation – effects on pyrolysis behavior”. Journal of Analytical and Applied Pyrolysis. Vol. 47. 1998. pp. 33-42. DOI: https://doi.org/10.1016/S0165-2370(98)00087-4

M.J.G. Alonso, A.G. Borrego, D. Álvarez, J.B. Parra, R. Menéndez. “Influence of pyrolysis temperature on charoptical texture and reactivity”. Journal of Analytical and Applied Pyrolysis. Vol. 58-59. 2001. pp. 887-909. DOI: https://doi.org/10.1016/S0165-2370(00)00186-8

M. Cloke, E. Lester. “Characterization of Coals for Combustion using Petrographic Analysis: a Review”. Fuel. Vol. 73. N.º 3. 1994. pp. 315-320. DOI: https://doi.org/10.1016/0016-2361(94)90081-7

X. Shu, X. Xu. ”Study on morphology of chars from coal pyrolysis”. Energy & Fuels. Vol. 15. 2001. pp. 1347-1353. DOI: https://doi.org/10.1021/ef000202g

J. Yu, J. Lucas, T. Wall, G. Liu, C. Sheng. “Modeling the development of char structure during the rapid heating of pulverized coal”. Combustion and Flame. Vol. 136. 2004. pp. 519-532. DOI: https://doi.org/10.1016/j.combustflame.2003.12.009

S.L. Bend, I.A.S. Edwards, H. Marsh. “Petrographic characterization of coals to relate to combustion efficiency”. Proceeding of the 1989 International Conference on Coal Science. Tokio. 1989. pp. 437-440.

M.J.G. Alonso, A.G. Borrego, D. Álvarez, R. Menéndez. “Pyrolysis behaviour of coals at different temperatures”. Fuel. Vol. 78. 1999. pp. 1501-1513. DOI: https://doi.org/10.1016/S0016-2361(99)00081-2

A. Arenillas, F. Rubiera, C. Pevida, J.J. Pis. “A comparison of different methods for predicting coal devolatilisation kinetics”. Journal of Analytical and Applied Pyrolysis. Vol. 58-59. 2001. pp. 685-701. DOI: https://doi.org/10.1016/S0165-2370(00)00183-2

S. Bend, I. Edwards, H. Marsh. “The influence of rank upon char morphology and combustion”. Fuel. Vol. 71. 1992. pp. 493-501. DOI: https://doi.org/10.1016/0016-2361(92)90145-E

J.H. Slaghuis, L.C. Ferreira, M.R. Judo. “Volatile material in coal: effect of inherent mineral mater”. Fuel. Vol. 70. 1991. pp. 471-473. DOI: https://doi.org/10.1016/0016-2361(91)90141-V

A. Arenillas, F. Rubiera, J.J. Pis, M.J. Cuesta, M.J. Iglesias, A. Jiménez, I. Suárez-Ruiz. “Thermal behaviour during the pyrolysis of low rank perhydrous coals”. Journal of Analytical and Applied Pyrolysis. Vol. 68-69. 2003. pp. 371-385. DOI: https://doi.org/10.1016/S0165-2370(03)00031-7

D. Zhang, T.F. Wall, D.J. Harris, I.W. Smith, J. Chen, B.R. Stanmore. “Experimental studies of ignition behavior and combustion reactivity of pulverized fuel particles”. Fuel. Vol. 71. 1992. pp. 1239-1246. DOI: https://doi.org/10.1016/0016-2361(92)90049-T

J. Yu, V. Strezov, J.A. Lucas, T.F. Wall. “Swelling behaviour of individual coal particles in the single particle reactor”. Fuel. Vol. 82. 2003. pp. 1977-1987. DOI: https://doi.org/10.1016/S0016-2361(03)00159-5

T.K. Gale, C.H. Bartholomew, T.H Fletcher. “Decreases in the swilling and porosity of bituminous coals during devolatilization at high heating rates”. Combustion and Flame. Vol. 100. 1995. pp. 94-100. DOI: https://doi.org/10.1016/0010-2180(94)00071-Y

P.J. Street, R.P. Weight, P. Lightman. “Further investigations of structural changes occurring in pulverized coal”. Fuel. Vol. 48. 1969. pp. 343-365.

P. Ligthman, P.J. Street. “Microscopic examination of heat treated pulverized coal particles”. Fuel. Vol. 47. 1968. pp. 7-28.

B.N. Nandi, T.D. Brown, G.K. Lee. “Inert coal macerals in combustion”. Fuel. Vol. 56. 1977. pp. 125-130. DOI: https://doi.org/10.1016/0016-2361(77)90130-2

L.H. Hamilton, A.B. Arlying, M. Shibaoka. “A new experimental device for pyrolysing coal particles under controlled conditions over a wide range of heating rates”. Fuel. Vol. 58. 1979. pp. 873- 876. DOI: https://doi.org/10.1016/0016-2361(79)90203-5

L.H. Hamilton. “A preliminary account of char structures produced from Liddell vitrinite pyrolysed at various heating rates”. Fuel. Vol. 59. 1980. pp. 112-116. DOI: https://doi.org/10.1016/0016-2361(80)90051-4

L.H. Hamilton. “Char morphology and behaviour of Australian vitrinites of various rank pyrolysed at various heating rates”. Fuel. Vol. 60. 1981. pp. 909-913. DOI: https://doi.org/10.1016/0016-2361(81)90084-3

M. Shibaoka. “Microscopic investigation of unburnt char in fly ash. Fuel. Vol. 64. 1985. pp. 263-269. DOI: https://doi.org/10.1016/0016-2361(85)90227-3

R.B. Jones, C.B. McCourt, C. Morley, K. King. “Maceral and rank influences on the morphology of coal char”. Fuel. Vol. 64. 1985. pp. 1460-1467.

C. Tsai, A. Scaroni. “The structural changes of bituminous coal particles during the initial stages of pulverized coal combustion”. Fuel. Vol. 66. 1987. pp. 200-206. DOI: https://doi.org/10.1016/0016-2361(87)90241-9

J.G. Bailey, A. Tate, C.F.K. Diessel, T.F. Wall. “A char morphology system with applications to coal combustion”. Fuel. Vol. 69. 1990. pp. 225-239. DOI: https://doi.org/10.1016/0016-2361(90)90179-T

C.G. Thomas, M. Shibaoka, E. Gawronski. “Reactive (fusible) inertinite in pulverized fuel combustion: 1. A laser microreactor technique”. Fuel. Vol. 72. 1993. pp. 907-912. DOI: https://doi.org/10.1016/0016-2361(93)90286-B

C.G. Thomas, M. Shibaoka, E. Gawronski. “Reactive (fusible) inertinite in pulverized fuel combustion: 2. Determination of reactive (fusible) inertinite”. Fuel. Vol. 72. 1993. pp. 913-919. DOI: https://doi.org/10.1016/0016-2361(93)90287-C

P. Rosenberg, H. Petersen, E. Thomsen. “Combustion char morphology related to combustion temperature and coal petrography”. Fuel. Vol. 75. N.º 9. 1996. pp. 1071-1082. DOI: https://doi.org/10.1016/0016-2361(96)00074-9

Y.S. Zheng, Z.-J. Wang. “Distribution and burning modes of char particles during combustion”. Fuel. Vol. 75. 1996. pp. 1434-1440. DOI: https://doi.org/10.1016/0016-2361(96)00145-7

D. Álvarez, E. Lester. Atlas of Char Occurrences. Combustion Working Group, Commission III. Internacional Conference on Coal Petrology – ICCP. 2001.

A.F. Rojas. Estudio cinético de la combustión del char de carbón pulverizado. Tesis presentada a la Universidad del Valle. Cali. Para optar al grado de Doctor en Ingeniería. 2005.

M.-L. Chan, J.M. Jones, M. Pourkashanian, A. Williams. “The oxidative reactivity of coal chars in relation to their structure”. Fuel. Vol. 78. 1999. pp. 1539-1552. DOI: https://doi.org/10.1016/S0016-2361(99)00074-5

B. Valentim, M.J. Lemos de Sousa, P. Abelha, D. Boavida, I. Gulyurlu. “Relation between the petrographic composition of coal and the morphology of pyrolysis char produced in fluidised bed”. Energy & Fuels. Vol. 18. 2004. pp. 611-618. DOI: https://doi.org/10.1021/ef034016x

M. Shibaoka. “Combustion of coal in thin sections”. Fuel. Vol. 48. 1969. pp. 285-295.

M. Shibaoka, C.G. Thomas, B.C. Young. “The influence of rank and maceral composition on combustion of pulverized coal”. Proceedings of the 1985 Inter-national Conference on Coal Science. NEDO. 1985. pp. 665-668.

R.B. Jones, C.B. McCourt, C. Morley, K. King. “Maceral and rank influences on the morphology of coal char”. Fuel. Vol. 64. 1985. pp. 1460-1467. DOI: https://doi.org/10.1016/0016-2361(85)90351-5

C.G. Thomas, M. Shibaoka, E. Gawronski, M.E. Gos-nell, D. Ponganant, L.F. Brunckhorst, M.R. Salehi. “Swelling and plasticity of inertinite in pf combustion”. Proceedings of the 1989 International Conference on Coal Science. NEDO. Tokyo. 1989. pp. 213-216.

N. Oka, T. Murayama, H. Matsuoka, S. Yamada, T. Yamada, S. Shinozaki, M. Shibaoka, C. Thomas. “The influence of rank and maceral composition on ignition and char burnout of pulverized coal”. Fuel Processing Technology. Vol. 15. 1987. pp. 213-224. DOI: https://doi.org/10.1016/0378-3820(87)90046-4

R. Menéndez, A.G. Borrego, J. Bailey, E. Fuente, D. Ál-varez. “The effect of inertinite content on coal combustion reactivity”. Coal Science and Technology. Vol. 24. 1995. pp. 303-306.

A. Arenillas, F. Rubiera, J.J. Pis, J.M. Jones, A. Williams. “The effect of the textural properties of bituminous coal chars on NO emissions”. Fuel. Vol. 78. 1999. pp. 1779-1785. DOI: https://doi.org/10.1016/S0016-2361(99)00127-1

A. Arenillas, F. Rubiera, J. Parra, J.J. Pis. “Influence of char structure on reactivity and nitric oxide emissions. Fuel Processing Technology. Vol. 77-78. 2002. pp. 103-109. DOI: https://doi.org/10.1016/S0378-3820(02)00077-2

H. Petersen. “Morphology, formation y palaeo-environmental implications of naturally formed char particles in coals and carbonaceous mudstones”. Fuel. Vol. 77. DOI: https://doi.org/10.1016/S0016-2361(98)00021-0

N. º 11. 1998. pp. 1177-1183.

J. Yu, D. Harris, J. Lucas, D. Roberts, H. Wu, T. Wall. “Effect of pressure on char formation during pyrolysis of pulverized coal”. Energy & Fuel. Vol. 18. 2004. pp. 1346-1353. DOI: https://doi.org/10.1021/ef030019y

K. Matsuoka, H. Akiho, W. Xu, R. Gupta, T.F. Wall, A. Tomita. “The physical character of coal char formed during rapid pyrolysis at high pressure”. Fuel. Vol. 84. 2005. pp. 63-69. DOI: https://doi.org/10.1016/j.fuel.2004.07.006

D. Zeng, T.H. Fletcher. “Effects of Pressure on Coal Pyrolysis and Char Morphology”. Energy & Fuel. Vol. 19. 2005. pp. 1828-1838. DOI: https://doi.org/10.1021/ef0500078

L. Joyce. Images analysis: principles and practice. Joyce Loebl Ltda. Gateshead. England. 1985.

M. Allen. Profile analysis of bulk particulate materia. Ph. D. Thesis. Department of Mineral Resources Engineering. University of Nottingham. Nottingham. United Kingdom. 1993.

A. Sanyal. “The role of coal macerals in combustion”. Journal of the Institute of Energy. 1983. pp. 92-95.

D. Álvarez. Estructura del chars y su influencia sobre la combustión del carbón. Tesis de Doctorado. Universidad de Oviedo. Departamento de Química Orgánica e Inorgánica. Oviedo. España. 1997.

T. Wu, M. Cloke, R. Barranco, E. Lester. “Investigation of char morphology using image analysis”. 12th Int. Conference on Coal Science. 2003. pp. 2C3.

T. Wu, M. Cloke, R. Barranco, E. Lester. “The relationship between char morphology and its parental coal properties”. 12th Int. Conference on Coal Science. 2003. pp. 2C4.

M. Cloke, T. Wu, R. Barranco, E. Lester. Char characterization and its application in a coal burnout model. Fuel. Vol. 82. 2003. pp. 1989-2000. DOI: https://doi.org/10.1016/S0016-2361(03)00155-8

E. Lester. The characterisation of coals for combustion. Ph. D. Thesis. University of Nottingham. England. 1994.

R. Hurt, A. Davis, Y.C. Yang, T.J. Headley, G.D. Mitchell. “Residual carbon from pulverized coal fired boilers: 2. Morphology and physicochemical properties”. Fuel. Vol. 74. N.º 9. 1995. pp. 1297-1306. DOI: https://doi.org/10.1016/0016-2361(95)00100-J

Y. Chen, N. Shah, A. Braun, F.E. Huggins, G.P. Huffman. “Electron Microscopy Investigation of Carbonaceous Particulate Matter Generated by Combustion of Fossil Fuels”. Energy & Fuels. Vol. 19. 2005. pp. 1644-1651. DOI: https://doi.org/10.1021/ef049736y

H. Wu, G. Bryant, T. Wall. “The effect of pressure on ash formation during pulverized coal combustion”. Energy & Fuels. Vol. 14. 2000. pp. 745-750. DOI: https://doi.org/10.1021/ef990080w

E. Lester, M. Allen, M. Cloke, N.J. Miles. “Image analysis techniques for petrographic analysis”. Fuel Processing Technology. Vol. 36. 1993. pp. 17-24. DOI: https://doi.org/10.1016/0378-3820(93)90005-O

E. Lester, M. Cloke, M. Allen. “Char characterization using image analysis technology”. Energy & Fuels. Vol. 10. 1996. pp. 696-703. DOI: https://doi.org/10.1021/ef9501713

E. Lester, D. Watts, M. Cloke. “A novel automated image analysis method for maceral analysis”. Fuel. Vol. 81. N º 17. 2002. pp. 2209-2217. DOI: https://doi.org/10.1016/S0016-2361(02)00142-4

R. Barranco, M. Cloke, E. Lester. “Prediction of the burnout performance of some South American coals using a drop-tube furnace”. Fuel. Vol. 82. 2003. pp. 1893-1899. DOI: https://doi.org/10.1016/S0016-2361(03)00192-3

G. Liu, P. Benyon, K. Benfell, G. Bryant, A.G. Tate, R.K. Boyd, D.J. Harris, T.F. Wall. “The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions”. Fuel. Vol. 79. 2000. pp. 617-626. DOI: https://doi.org/10.1016/S0016-2361(99)00185-4

L. Tang, R. Gupta, C. Sheng, T. Wall. “The char structure characterization from the coal reflectogram”. Fuel. Vol. 84. 2005. pp. 1268-1276. DOI: https://doi.org/10.1016/j.fuel.2004.09.025

D. Fernández, K. Mejía, J. Peña, C. Torres. “Diseño y desarrollo de un software para la discriminación e identificación de macerales en muestras de carbón empleando procesamiento digital de imágenes correlación digital”. Revista Colombiana de Física. Vol. 35. 2003. pp. 360-363.

A. Blandón, A. Restrepo. “Correlación de mantos de carbón a partir de la aplicación del análisis de imagen al estudio de los macerales liptiníticos del carbón”. VI Congreso Nacional de Ciencia y Tecnología del Carbón. Memorias en formato CD-Rom. Universidad Pontificia Bolivariana. Medellín. 2003.

Descargas

Publicado

2014-03-31

Cómo citar

Rojas, A. ., & Barraza, J. (2014). Caracterización morfológica del carbonizado de carbones pulverizados: estado del arte. Revista Facultad De Ingeniería Universidad De Antioquia, (41), 84–97. https://doi.org/10.17533/udea.redin.19017