Hydrolysis time influence in obtaining hybrid film with addition of cerium ions for protecting galvanized steels

Authors

  • Sandra R. Kunst Federal University of Rio Grande do Sul
  • Gustavo A. Ludwig Federal University of Rio Grande do Sul
  • José F. Matos Federal University of Rio Grande do Sul
  • Célia F. Malfatti Federal University of Rio Grande do Sul

DOI:

https://doi.org/10.17533/udea.redin.18144

Keywords:

hybrid film, hydrolysis time, electrochemical impedance

Abstract

The hybrid films act as a barrier layer between the substrate and the environment. This kind of coating reduces the electrolyte permeability, decreasing the corrosion rate of the substrate. However, many variables influenced the corrosion resistance of hybrid coating. The main factors that influence the thickness of the films are: temperature, curing time, the concentration alcooxide precursors on the bath, the pH of the hydrolysis and the hydrolysis time. In this study, the galvanized steel was coated with and hybrid film obtained from precursors consisting of a sol alcooxide 3-(trimetoxisililpropil) methacrylate (TMSPMA) and tetraethoxysilane (TEOS) with cerium nitrate addition [0,01 M]. The hydrolysis time was varied in four levels of (1, 3, 24 and 48 hours). The characterization of the films was performed by SEM, profilometry, contact angle determination, polarization and electrochemical impedance spectroscopy measurements. Results showed that the hydrolysis time presented influence on the hybrid film properties and consequently on the protection.

|Abstract
= 74 veces | PDF (ESPAÑOL (ESPAÑA))
= 15 veces|

Downloads

Download data is not yet available.

Author Biographies

Sandra R. Kunst, Federal University of Rio Grande do Sul

Ingeniery school.

Gustavo A. Ludwig, Federal University of Rio Grande do Sul

Ingeniery school.

José F. Matos, Federal University of Rio Grande do Sul

Ingeniery school.

Célia F. Malfatti, Federal University of Rio Grande do Sul

Ingeniery school.

References

Standard definitions of terms relating to electroplating, Book of ASTM Standards, B374. 4th ed. American Society for Testing and Materials. 2003. pp. 9

M. Schlesinger, M. Pauovic. “Modern Electroplanting”. The Electrochemical Society. 4th ed. Ed. Inc. John Willey & Sons. New York, USA. 2000. pp. 833.

D. Graeve, J. Vereecken, A. Franquet, T. Schaftinghen, H. Terryn. “Silane coating of metal substrates: Complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties”. Progress in Organic Coatings. Vol. 59. 2007. pp. 224-229.

A. Franquet, H. Terryn, J. Vereecken. “Composition and thickness of non-functional organosilane films coated on aluminum studied by means of infra-red spectroscopic ellipsometry”. Thin Solid Films. Vol. 441. 2003. pp. 76-84.

A. Franquet, J. Laet, T. Schram, H. Terryn, V. Subramaniam, W.van Ooij, J. Vereecken. “Determination of the thickness of thin silane films on aluminum surfaces by means of spectroscopic ellipsometry”. Thin Solid Films. Vol. 384. 2001. pp. 37-45.

A. Seth, W. Van Ooij, P. Puomi, Z. Yin, A. Ashirgade, S. Bafna, C. Shivane. “Novel, one-step, chromate-free coatings containing anticorrosion pigments for metalsAn overview and mechanistic study”. Progress in Organic Coatings. Vol. 58. 2007. pp. 136-145.

M. Zheludkevich, R. Serra, M. Montemor, I. Miranda, M. Ferreira. “Corrosion protective properties of nanostructured sol-gel hybrid coating to AA2024-T3.” Surface & Coatings Technology. Vol. 200. 2006. pp. 3084-3094.

F. Deflorian, S. Rossi, L. Fedrizzi. “Silane pretreatments on copper and aluminium”. Electrochimica Acta. Vol. 51. 2006. pp. 6097-6103.

D. Zhu, W. Ooij. “Corrosion protection of metals by waterbased silane mixtures of bis-[trimethoxysilylpropyl] amine and vinyltriacetoxysilane”. Progress in Organic Coatings. Vol. 49. 2004. pp. 42-52.

W. Ooij, D. Zhu. “Electrochemical impedance spectroscopy of bis- triethoxysilypropyl]tretasulfide on Al 2024-T3 substrates”. Corrosion. Vol. 57. 2001. pp. 413-427.

W. Ooij. ”Corrosion protection properties of organofunctionalsilanes – an overview”. Tsinghua Science and Technology. Vol. 10. 2005. pp. 639-664.

M. Montemor, M. Ferreira. “Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfidesilane films applied on the AZ31 Mg alloy”. ElectrochimicaActa. Vol. 52. 2007. pp. 7486-7495.

L. Palomino. Caracterização microestrutural e eletroquímica de revestimentos ambientalmente amigáveis aplicados sobre a liga de Al 2024-T3. Tesis de doctorado. Dpto. Eng. Química. USP. São Paulo, Brasil. 2007. pp. 5-15.

W. Ooij, D. Zhu, V. Palanivel, J. Lamar, M. Stacy. Potential of silanes for chromate replacement in metal finishing industries. Department of Materials Science Engineering, University of Cincinnati. Ohio, 2002. Available on: http://www.eng.uc.edu/~wvanooij/SILANE/pot_chromate_rpl.pdf. Accessed: March 2012.

D. Zhu. Corrosion protection of metals by silane surface treatment. PhD. Thesis. Doctor of Philosophy. Department of Materials and Engineering, University of Cincinnati. Ohio, USA. 2005. pp. 290

T. Child, W. Ooij. “Application of silane technology to prevent corrosion of metals improves paint adhesion”. Coatings World. 1999. pp. 42-53.

S. Kunst, J. Matos, E. Leal, C. Malfatti. “Tratamiento superficial del acero galvanizado con películas híbridas constituidos por TMSPMA y TEOS”. Información Tecnológica. Vol. 22. 2011. pp. 67-76.

F. Xia, S. Xu. “Effect of surface pre-treatment on the hydrophilicity and adhesive properties of multilayered laminate used for lithium battery packaging”. Applied Surface Science. Vol. 268. 2013. pp. 337-342.

Y. Xiu, D. Hess, C. Wong. UV-Resistant and Superhydrophobic Self-Cleaning Surfaces using Solgel Process. A. Cairú, K. Mittal. (editors). 1st ed. Ed. Hoboken. CRC Press. New Jersey, USA. 2009. pp.495.

X. Zhang, Y. Wu, S. He, D. Yang. “Structural characterization of sol–gel composites using TEOS/ MEMO as precursors”. Surface and Coatings Technology. Vol. 201. 2007. pp. 6051-6058.

W. Ooij. “Improved service life of coated metals by engineering the Polymer-Metal interface”. Service Life Prediction of Organic Coatings – A Systems Approach. D. Bauer, J. Martin. (editors). 1st ed. Ed. ACS Symposium Series. Oxford University. Oxford, England. 1999. pp. 354-377.

W. Ooij, D. Zhu, V. Palanivel, J. Lamar, M. Stacy. Potencial of silanes for chromate replacement in metal finishing industries. Department of Materials Science Engineering, Universityof Cincinnati. Ohio, US. 2002. Available on: http://www.eng.uc.edu/wvanooij/SILANE/pot_chromate_rpl.pdf. Accessed: August 2011.

Published

2014-01-20

How to Cite

Kunst, S. R., Ludwig, G. A., Matos, J. F., & Malfatti, C. F. (2014). Hydrolysis time influence in obtaining hybrid film with addition of cerium ions for protecting galvanized steels. Revista Facultad De Ingeniería Universidad De Antioquia, (69), 124–135. https://doi.org/10.17533/udea.redin.18144

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

You may also start an advanced similarity search for this article.