Hydrogen and carbon nanotubes production by methane decomposition over Ni°/La2 O3 obtained from LaNiO3-δ perovskite

Authors

  • Germán Sierra Gallego Universidad de Antioquia
  • Catherine Batiot-Dupeyrat Université de Poitiers
  • Joël Barrault Université de Poitiers
  • Fanor Mondragón Universidad de Antioquia

Keywords:

Methane decomposition, CNTs, hydrogen production, perovskites

Abstract


LaNiO3 perovskite, both reduced and non-reduced, was evaluated in the decomposition of methane at 600°C and 700°C. The Ni°/La2 O3 obtained by reduction of LaNiO3 showed the largest methane decomposition activity and also the highest yield of hydrogen and carbon nanotubes (CNTs): 18 LH2 /(gcat h) and 2.2 g CNT/(g cat h), respectively. To our knowledge, these figures are among the highest values reported in the scientific literature. When non-reduced perovskite was used, the conversions and yields of CNTs were about 4 times lower than those with reduced catalyst. Multi walled carbon nanotubes were characterized by X-ray diffraction, surface area, transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy. TEM micrographs showed that the CNTs were multi-walled, with inner diameters ranging from 5 to 16 nm, external diameters up to about 40 nm, and several microns in length.

|Abstract
= 40 veces | PDF (ESPAÑOL (ESPAÑA))
= 17 veces|

Downloads

Download data is not yet available.

Author Biographies

Germán Sierra Gallego, Universidad de Antioquia

Instituto de Química

Catherine Batiot-Dupeyrat, Université de Poitiers

Laboratoire de Catalyse en Chimie Organique, Ecole Supérieure d’Ingénieurs de Poitiers

Joël Barrault, Université de Poitiers

Laboratoire de Catalyse en Chimie Organique, Ecole Supérieure d’Ingénieurs de Poitiers

Fanor Mondragón, Universidad de Antioquia

Instituto de Química

References

N. Z. Muradov, T. N. Veziroglub, “From hydrocarbon to hydrogen–carbon to hydrogen economy,” Int J.

Hydr. Energy. Vol. 30. 2005. pp. 225-237.

J. N. Armor, “Striving for catalytically green processes in the 21st century,” Appl. Catal. A. Vol. 189. 1999. pp. 153-162.

M. Steinberg, H. C. Cheng, “Modern and prospective technologies for hydrogen production from fossil fuels,” Int. J. Hydr. Energy. Vol. 14. 1989. pp. 797-820.

T. Zhang, M. D. Amiridis, “Hydrogen production via the direct cracking of methane over silica-supported

nickel catalysts,” Appl. Catal. A. Vol. 167. 1998. pp. 161-172.

R. M De Almeida, H. V. Fajardo, D. Z. Mezalira, G. B. Nuernberg, L. K. Noda, L. F. Probst and N. L.V. Carreño. “Preparation and evaluation of porous nickelalumina spheres as catalyst in the production of hydrogen from decomposition of methane,” J. Mol. Catal. A. Vol. 259. 2006. pp. 328-335.

N. Z. Muradov, “How to produce hydrogen from fossil fuels without CO2 emission,” Int. J. Hydr. Energy. Vol. 18. 1993. pp. 211–215.

T. V. Choudhary, C. Sivadinarayana, C. C. Chusuey, A. Klinghoffer, D. W. Goodman, “Hydrogen Production via Catalytic Decomposition of Methane,” J. Catal. Vol. 199. 2001. pp. 9-18.

K. P. De Jong, J. W. Geus, “Carbon Nanofibers: Catalytic Synthesis and Applications,” Catal. Rev. Sci. Eng. Vol. 42. 2000. pp. 481-510.

N. M. Rodriguez, M. S. Kim, R. T. K. Baker, “Carbon nanofibers: A unique catalyst support medium,” J. Phys. Chem. Vol. 98. 1994. pp. 13108-13111.

C. Park, E. S. Engel, A. Crowe, T. R. Gilbert, N. M. Rodríguez, “Use of carbon nanofibers in the removal of organic solvents from water,” Langmuir. Vol. 16. 2000. pp. 8050-8056.

A. Chambers, C. Park, R. T. K. Baker, N. M. Rodriguez, “Hydrogen storage in graphite nanofibers,” J. Phys. Chem. B. Vol. 102. 1998. pp. 4253-4256.

K. Lozano, E. V. Barrera, “Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses,” Appl. Polymer. Sci. Vol. 79. 2001. pp. 125-133.

H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy,” Nature. Vol. 384. 1996. pp. 147-150.

R. Pichinni, “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor,” U.S. Patent No. 3, 330, 697. 1967.

B. Li, S. Kado, Y. Mukainakano, T. Miyazawa, T. Miyao, S. Naito, K. Okumura, K. Kunimori and K.Tomishige. “Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane,” J. Catal. Vol. 245. 2007. pp. 144-155.

D. G. Mustard, C. H. Bartholomew, “Determination of metal crystallite size and morphology in supported nickel catalysts,” J. Catal. Vol. 67. 1981. pp. 186-206.

Z. W. Pan, S. S. Xie, B.H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, “Direct growth of aligned open carbon nanotubes by chemical vapor deposition,” Chem. Phys. Lett. Vol. 299. 1999. pp. 97–102.

R. Aiello, J. E. Fiscus, H. C. Z. Loye, M. D. Amiridis, “Hydrogen production via the direct cracking of methane over Ni/SiO2: Catalyst deactivation and regeneration,” Appl. Catal. A. Vol. 192. 2000. pp. 227-234.

W. Z. Qian, T. Liu, F. Wei, Z. W. Wang, H. Yu, “Carbon nanotubes containing iron and molybdenum particles as a catalyst for methane decomposition,” Carbon. Vol. 41. 2003. pp. 846-848.

T. V. Reshetenko, L. B. Avdeeva, Z. R. Ismagilov, A. L Chuvilin., V. B. Fenelonov, “Catalytic filamentous carbons-supported Ni for low-temperature methane decomposition,” Catal. Today. Vol. 102. 2005. pp. 115–120.

H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, N. Tomonaga and T. Setoguchi. “Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts,” Carbon. Vol. 44. 2006. pp. 2912–2918.

A. Monzón , N. Latorre, T. Ubieto, C. Royo, E. Romeo, J. I. Villacampa, L. Dussault, J. C. Dupin, C. Guimon, M. Montioux, “Improvement of activity and stability of Ni–Mg–Al catalysts by Cu addition during hydrogen production by catalytic decomposition of methane,” Catal. Today. Vol. 116. 2006. pp. 264–270.

G. Bonura, O. Di Blasi, L. Spadaro, F. Arena, F. Frusteri, “A basic assessment of the reactivity of Ni catalysts in the decomposition of methane for the production of COx-free hydrogen for fuel cells application,” Catal. Today. Vol. 116. 2006. pp. 298–303.

E. K. Lee, S. Y. Lee, G. Y. Han, B. K. Lee, T. J. Lee, J. H. Jun, K. J. Yoon, “Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production,” Carbon. Vol. 42. 2004. pp. 2641-2648.

Z. Bai, H. Chen, W. Li, B. Li, “Hydrogen production by methane decomposition over coal char,” Int. J.

Hydr. Energy. Vol. 31. 2006. pp. 899-905.

R. A. Couttenye, M. H. De Vila, S. L. Suib, “Decomposition of methane with an autocatalytically reduced nickel catalyst,” J. Catal. Vol. 233. 2005. pp. 317-326.

Q. Weizhong, L. Tang, W. Zhanwen, W. Fei, L. Zhifei, L. Guohua and L. Yongdan. “Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor,” Appl. Catal. A. Vol. 260. 2004. pp. 223–228.

M. H. Kim, E. K. Lee, J. H. Jun, S. J. Kong, G. J. Han, B. K. Lee, T. J. Lee and K. J. Yoon. “Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study,” Int. J. Hydr. Energy. Vol. 29. 2004. pp. 187–193.

J. I. Villacampa, C. Royo, E. Romeo, J. A. Montoya, P. Del Angel, A. Monzón, “Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts: Reaction and regeneration studies,” Appl. Catal. A. Vol.

2003. pp. 363-383.

Q. Weizhong, L. Tang, F. Wei, Z. Wang, Y. Li. “Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition,” Appl. Catal. A. Vol. 258. 2004. pp. 121-124.

T. V. Choudhary, C. Sivadinarayana, C. C. Chusuei, A. Klinghoffer, D. W. Goodman, “Hydrogen Production via Catalytic Decomposition of Methane,” J. Catal. Vol.199. 2001. pp. 9-18.

J. Li, G. Lu, K. Li, W. Wang, “Active Nb2O5-supported nickel and nickel–copper catalysts for methane

decomposition to hydrogen and filamentous carbon,” J. Mol. Catal. A. Vol. 221. 2004. pp. 105-112.

R. Guil-López, V. La Parola, M. A. Peña and J. L. G. Fierro, ”Hydrogen production via CH4 pyrolysis: Regeneration of ex hydrotalcite oxide catalysts,” Catal. Today. Vol. 116. 2006. pp. 289-297.

Z. Bai, H. Chen, W. Li, B. Li, “Hydrogen production by methane decomposition over coal char,” Int. J.

Hydr. Energy. Vol 31. 2006. pp. 899 – 905.

Z. Bai, H. Chen, B. Li, W. Li, “Catalytic decomposition of methane over activated carbon,” J. Anal. Appl.

Pyrolysis. Vol. 73. 2005. pp. 335–341.

M. H. Kim, E. K. Lee, J. H Jun, S. J. Kong, G. Y. Hana, B. K. Lee, “Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study,” Int. J. Hydr. Energy. Vol. 29. 2004. pp. 187 – 193.

W. Qian, T. Liu, F. Wei, Z. Wang, Y. Li, “Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition,” Appl.mCatal. A. Vol. 258. 2004. pp. 121 – 124.

T. V. Reshetenko, L. B. Avdeeva, Z. R. Ismagilov, A. L. Chuvilin, V. A. Ushakov, “Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition,” Appl. Catal. A. Vol. 247. 2003. pp. 51–63.

A. Djaidja, S. Libs, A. Kiennemann, A. Barama, “Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts,” Catal. Today. Vol. 113. 2006. pp. 194-200.

A Misra, P. K. Tyagi, M. K. Singh, D. S. Misra, “FTIR studies of nitrogen doped carbon nanotubes,” Diam. & Relat. Mater. Vol. 15. 2006. pp. 385-388.

P. M. Ajayan, T. W. Ebbesen, S. Iijama, “Opening carbon nanotubes with oxygen and implications for filling,” Nature. Vol. 362. 1993. pp. 522-525.

E. F. Kukovitskii, L. A. Chernoszatonskii, “Carbon nanotubes of polyethylene,” Chem. Phys. Lett. Vol.

1997. pp. 323-328.

S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, A. Tagliaferro, “Purification of carbon

nanotubes grown by thermal CVD,” Phys. E: Low-dimensional Systems and Nanostructures. Vol: 37. 2007.

pp. 58-61.

E. Yoo, T. Habe, Nakamura, “Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials,” Sci. Techn. Adv. Mater. Vol. 6. 2005. pp. 615–619.

Q. Liang, L. Z. Gao, Q. Li, S. H. Tang, B. C. Liu, Z. L. Yu, “Carbon nanotube growth on Ni-particles prepared in situ by reduction of La2NiO4,” Carbon. Vol. 39. 2001. pp. 897–903.

H. B. Zhang, G. D. Lin, Z. H. Zhou, X. Dong, T. Chen, “Raman spectra of MWCNTs and MWCNTbased

H2-adsorbing system,” Carbon. Vol. 40. 2002. pp. 2429-2436.

M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Reports. Vol. 409. 2005. pp. 47–99.

P. Tan, S. Zhang, K. T. Yue, F. Huang, “Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods,” J. of Raman Spectrosc. Vol. 28. 1997. pp. 369-372.

Published

2014-02-12

How to Cite

Sierra Gallego, G. ., Batiot-Dupeyrat, C., Barrault, J., & Mondragón, F. (2014). Hydrogen and carbon nanotubes production by methane decomposition over Ni°/La2 O3 obtained from LaNiO3-δ perovskite. Revista Facultad De Ingeniería Universidad De Antioquia, (44), 7–19. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/18464