Software para la enseñanza de la dinámica y control de intercambiadores de calor de tubos y coraza

Autores/as

  • Fiderman Machuca Universidad del Valle
  • Oscar Urresta Universidad del Valle

DOI:

https://doi.org/10.17533/udea.redin.18475

Palabras clave:

Intercambiadores de calor, tubos y coraza, software, educación, dinámica y control de procesos

Resumen

Este trabajo presenta la estructura de un software desarrollado para la enseñanza y aprendizaje de la dinámica y control de intercambiadores de calor de tubos y coraza. El programa presenta, de manera numérica y gráfica, el comportamiento dinámico en lazo abierto y cerrado del proceso para diferentes parámetros de diseño y condiciones de operación variables. El software permite modificar condiciones tanto de operación como de diseño, por ejemplo, temperatura y caudales de entrada a los tubos y coraza, número y longitud de tubos, número de pasos, diámetro externo e interno de los tubos, diámetro interno de coraza y factor de ensuciamiento.

|Resumen
= 298 veces | PDF
= 229 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fiderman Machuca, Universidad del Valle

Escuela de Ingeniería Química

Oscar Urresta, Universidad del Valle

Escuela de Ingeniería Química

Citas

K. S. Lee, M. L. H. Low. “Engineering visualization and modeling: teaching and management using the IT approach”. International Journal of Mechanical Engineering Education. Vol. 32. 2004. pp. 160-181. DOI: https://doi.org/10.7227/IJMEE.32.2.8

C. H. J. Davies. “Student engagement with simulations: a case study”. Computers & Education. Vol. 39. 2002. pp. 271-282 DOI: https://doi.org/10.1016/S0360-1315(02)00046-5

D. J. Magin, J. A. Reizes. “Computer simulation of laboratory experiments. An unrealized potential”. Computers & Education. Vol. 14. 1990. pp. 263-270. DOI: https://doi.org/10.1016/0360-1315(90)90009-V

E. M. A. Mokheimer, M. A. Antar. “On the use of spreadsheets in heat conduction analysis”.International Journal of Mechanical Engineering Education. Vol. 28. 2000. pp. 113-140. DOI: https://doi.org/10.7227/IJMEE.28.2.2

L. E. Blanco, C. Silveria. “Competencias: una forma de estandarización global”. Revista Escuela Colombiana de Ingeniería. Vol. 59. 2005. pp. 39-46.

G. T. Lapidus. “Elaboration of industrial material and heat balances as a teaching aid”. Hydrometallurgy. Vol. 79. 2005. pp. 40-47. DOI: https://doi.org/10.1016/j.hydromet.2003.09.006

M. K. Ermakov, S. A. Nikitin, V. I. Polezhaev, V. P. Yaremchuk. “Education and tutorial in modeling of elementary flows, heat and mass transfer during crystal growth in ground-based and microgravity enviroment”. Journal of Cristal Growth. Vol. 266. 2004. pp. 388-395. DOI: https://doi.org/10.1016/j.jcrysgro.2004.02.069

L. Lona, M. Fernandes, M. Roque, S. Rodríguez. “Developing an educational software for heat exchangers and heat exchanger networks projects”. Computer and Chemical Engineering. Vol. 24. 2000. pp. 1247-1251. DOI: https://doi.org/10.1016/S0098-1354(00)00324-0

J. W. Ponton. The ECOSSE Control HyperCourse. http://ecosse.org/courses/control/. Consultada el 19 de junio de 2007.

P. C. Wankat. “What works. A quick guide to learning principles”. Chemical Engineering Education. Vol. 27. 1993. pp. 120-127.

D. J. Cooper. “PICLES. A simulator for teaching the real world of process control”. Chemical Engineering Education. Vol. 27. 1993. pp. 176-181.

M. B. Cutlip, M. Shacham, N. Brauner. “Application of an interactive ODE simulation program in process control education”. Chemical Engineering Education. Vol. 28. 1994. pp. 130-135.

K. Sherwin, M. Mavromihales. “Design of a heat exchanger”. International Journal of Mechanical Engineering Education. Vol. 27. 1999. pp. 209-216. DOI: https://doi.org/10.7227/IJMEE.27.3.3

D. P. Sekulic. “A unified approach to the analysis of unidirectional and bi-directional parallel flow heat exchangers”. International Journal of Mechanical Engineering Education. Vol. 28. 2000. pp. 307-320. DOI: https://doi.org/10.7227/IJMEE.28.4.3

J. E. Gillett. “Chemical engineering education in the next century”. Chemical Engineering Technology. Vol. 24. 2001. pp. 561-570. DOI: https://doi.org/10.1002/1521-4125(200106)24:6<561::AID-CEAT561>3.0.CO;2-X

P. A. Martin, F. K. Junior. “Uso de trocador de calor como ferramenta didática para o ensino de modelagem y sistemas de controle”. XXIII Congreso Brasilero de Ensino de Engenharia. Campina Grande. Brasil. 2005. p. 12. DOI: https://doi.org/10.15552/2236-0158/abenge.v25n2p3-9

F. L. Tan, S. C. Fok. “An educational computer-aided tool for heat exchanger design”. Computer Applications in Engineering Education. Vol. 14. 2006. pp. 77-89. DOI: https://doi.org/10.1002/cae.20073

M. R. Ansari, V. Mortazavi. “Simulation of dynamical response of a countercurrent heat exchanger to inlet temperature or mass flow rate change”. Applied Thermal Engineering. Vol. 26. 2006. pp. 2401-2408. DOI: https://doi.org/10.1016/j.applthermaleng.2006.02.015

R. K. Sahoo, W. Roetzel. “Hyperbolic axial dispersion model for heat exchangers”. International Journal of Heat and Mass Transfer. Vol. 45. 2002. pp. 1261- 1270. DOI: https://doi.org/10.1016/S0017-9310(01)00227-7

O. Urresta. “Modulo tutorial para la enseñanza de la dinámica y control de los intercambiadores de calor de tubos y coraza”. Trabajo de Grado, 2006. Universidad del Valle. Cali. Colombia., pp. 1-94.

I. E. Grossmann, F. T. Mizutani, F. L. P. Pessoa, E. M. Queiroz, S. Hauan. “Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs. 1. Shell-and-tube heat-exchanger design”. Industrial Engineering Chemistry Research. Vol. 42. 2003. pp. 4009–4018. DOI: https://doi.org/10.1021/ie020964u

I. E. Grossmann, F. T. Mizutani, F. L. P. Pessoa, E. M. Queiroz, S. Hauan. “Mathematical Programming Model for Heat-Exchanger Network Synthesis Including Detailed Heat-Exchanger Designs. 2. Network Synthesis”. Industrial Engineering Chemistry Research. Vol. 42. 2003. pp. 4019–4027. DOI: https://doi.org/10.1021/ie020965m

L. M. F. Lona, M. C. Roque. “The economics of the detailed design of heat exchanger networks using the Bell Delaware method”. Computer and Chemical Engineering. Vol. 24. 2000. pp. 1309-1353. DOI: https://doi.org/10.1016/S0098-1354(00)00415-4

M. A. S. S. Ravagnani, A. P. da Silva, A. L. Andrade. “Detailed equipment design in heat exchanger networks synthesis and optimisation”. Applied Thermal Engineering. Vol. 23. 2003. pp. 141-151. DOI: https://doi.org/10.1016/S1359-4311(02)00156-4

W. Roetzel, X. Luo, X. Guan, M. Li. “Dynamic behaviour of one-dimensional flow multistream heat exchangers and their networks”. International Journal of Heat and Mass Transfer. Vol. 46. 2003. pp. 705- 715. DOI: https://doi.org/10.1016/S0017-9310(02)00303-4

C. N. Ranong, W. Roetzel.“Steady-state and transient behaviour of two heat exchangers coupled by a circulating flowstream”. International Journal of Thermal Sciences. Vol. 41. 2002. pp. 1029-1043. DOI: https://doi.org/10.1016/S1290-0729(02)01390-X

U. C. Kapale, S. Chand. “Modeling for shell-side pressure drop for liquid flow in shell-and-tube heat exchanger”. International Journal of Heat and Mass Transfer. Vol. 49. 2006. pp. 601-610. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.022

M. C. Georgiadis, G. E. Rotstein, S. Macchietto. “Modelling and simulation of shell and tube heat exchangers under milk fouling”. AIChE Journal. Vol. 44. 1998. pp. 959-970. DOI: https://doi.org/10.1002/aic.690440422

S. Lecoeuche, S. Lalot, B. Desmet. “Modelling a non-stationary single tube heat exchanger using multiple coupled local neural networks”. International Communications in Heat and Mass Transfer. Vol. 32. 2005. pp. 913-922. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2004.08.029

O. W. Wang, G. N. Xie, M. Zeng, L. Q. Luo. “Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach”. Applied Thermal Engineering. Vol. 27. 2007. pp. 1096-1104. DOI: https://doi.org/10.1016/j.applthermaleng.2006.07.036

E. Ludwig. Applied process design for chemical and petrochemical plants. Boston: Gulf Professional. 2001. pp. 300-325.

D. J. Cooper, D. Dougherty. “A training simulator for computer-aided process control education”. Chemical Engineering Education. Vol. 34. 2000. pp. 252-262.

J. Jeowski. “SYNHEN: Microcomputer directed package of programs for heat exchanger network synthesis”. Computers & Chemical Engineering. Vol. 16. 1992. pp. 691-706 DOI: https://doi.org/10.1016/0098-1354(92)80017-4

A. K. Saboo, M. Morarir, D. Colberg. “RESHEX: An interactive software package for the synthesis and analysis of resilient heat-exchanger networks. I: Program description and application”. Computers & Chemical Engineering. Vol. 10. 1986. pp. 577-589. DOI: https://doi.org/10.1016/0098-1354(86)85037-2

H. I. Abu-Mulaweh. “Experimental comparison of heat transfer enhancement methods in heat exchangers”. International Journal of Mechanical Engineering Education. Vol. 31. 2003. pp. 160-167. DOI: https://doi.org/10.7227/IJMEE.31.2.8

C. K. Leong, K. C. Toh, Y. C. Leong. “Shell and tube heat exchanger design software for educacional aplications”. International Journal of Engineering Education. Vol. 14. 1998. pp. 217-224.

W. L. Lyuben. “Use of dynamic simulation to converge complex process flowsheet”. Chemical Engineering Education. Vol. 38. 2004. pp. 142-149.

Descargas

Publicado

2014-02-13

Cómo citar

Machuca, F., & Urresta, O. (2014). Software para la enseñanza de la dinámica y control de intercambiadores de calor de tubos y coraza. Revista Facultad De Ingeniería Universidad De Antioquia, (44), 52–60. https://doi.org/10.17533/udea.redin.18475