Comparación de modelos moleculares del monóxido de carbono para el cálculo del equilibrio líquido-vapor

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.n75a14

Palabras clave:

propiedades termodinámicas, equilibrio L-V, monóxido de carbono, modelos moleculares

Resumen

Existen varios modelos moleculares para el monóxido de carbono desarrollados a partir de diferentes mediciones experimentales. El objetivo de este trabajo es comparar los resultados que varios de estos modelos producen en el cálculo del equilibrio líquido-vapor en busca de recomendar qué modelo debe ser usado de acuerdo la propiedad y la fase que se desea calcular. Los modelos seleccionados corresponden a cuatro modelos no polares, con uno o dos sitios Lennard-Jones, y cuatro modelos polares, con dipolos o cargas parciales para representar la polaridad del monóxido de carbono. Simulaciones Monte Carlo en la versión Gibbs canónica (NVT-GEMC) se emplearon para determinar las densidades de las fases en equilibrio, la presión de vapor y la entalpia de vaporización entre 80 y 130 K con cada uno de los modelos seleccionados. Se encontró que los modelos más complejos SVH, ANC y PGB, son los que mejor describen la densidad del líquido saturado (alrededor de 7% de desviación promedio), pero estos modelos generan desviaciones mayores al 40% para las propiedades del vapor y al 20% para la entalpia de vaporización. Por otro lado, el modelo nopolar BLF generó las menores desviaciones para la presión de saturación y la densidad del vapor (6.8 y 21.5%, respectivamente). Este modelo, al igual que el modelo HCB, produce desviaciones aceptables para la densidad del líquido y la entalpia de vaporización (entre 10 y 12%). Los modelos no polares BLF y HCB, que no requieren el cálculo de las interacciones de largo alcance, se pueden considerar como los modelos moleculares que presentan un balance satisfactorio entre desviaciones en los resultados y complejidad de cálculo.

|Resumen
= 426 veces | PDF (ENGLISH)
= 368 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Bibian Alonso Hoyos-Madrigal, Universidad Nacional de Colombia

Departamento de Procesos y Energía, Facultad de Minas. Sede Medellín.

Farid Chejne-Janna, Universidad Nacional de Colombia

Departamento de Procesos y Energía. Sede Medellín.

Citas

J. Pablo, F. Escobedo. “Molecular simulations in chemical engineering: Present and future”. AIChE J. Vol. 48. 2002. pp. 2716-2721.

W. Gunsteren, H. Berendsen. “Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry”. Angew. Chem. Int. Ed. Engl. Vol. 29. 1990. pp. 992-1023.

W. Meerts, F. Leeuwm, A. Dymanus. “Electric and magnetic properties of carbon monoxide by molecularbeam electric-resonance spectroscopy”. Chem. Phys. Vol. 22. 1977. pp. 319-324.

J. Muenter. “Electric dipole moment of carbon monoxide”. J. Mol. Spectrosc. Vol. 55. 1975. pp. 490- 491.

W. Steele. “Monolayers of linear molecules adsorbed on the graphite basal plane: structures and intermolecular interactions”. Langmuir. Vol. 12. 1996. pp. 145-153.

J. Hirschfelder, C. Curtiss, R. Bird. Molecular theory of gases and liquids. 1st ed. Ed. Wiley. New York, USA. 1964. pp. 1112-1116.

R. Bird, W. Stewart, E. Lighfoot. Transport Phenomena. 2nd ed. Ed. Wiley. New York, USA. 2002. pp. 863-866.

R. Reid, J. Prausnitz, B. Poling. The properties of gases and liquids. 4th ed. Ed. McGraw-Hill. Singapore, Singapore. 1988. pp. 733-734.

J. Ramos, F. Río, I. McLure. “Nonconformal potentials and second virial coefficients in molecular fluids. II. Applications to nonspherical molecules”. J. Phys. Chem. B. Vol. 102. 1998. pp. 10576-10585.

F. Río, J. Ramos, I. McLure. “Nonconformal potentials and second virial coefficients in molecular fluids. I. Theory”. J. Phys. Chem. B. Vol. 102. 1998. pp. 10568- 10575.

J. Ramos, F. Río. I. McLure. “Accurate effective potentials and virial coefficients in real fluids - Part IV. Heterodiatomic and polyatomic substances with permanent multipoles and their mixtures with noble gases”. Phys. Chem. Chem. Phys. Vol. 3. 2001. pp. 2634-2643.

C. Gu, G. Gao, Y. Yu, T. Nitta. “Simulation for separation of hydrogen and carbon monoxide by adsorption on single-walled carbon nanotubes”. Fluid Phase Equilibria. Vol. 194-197. 2002. pp. 297-307.

M. Bohn. R. Lustig. J. Fischer. “Description of polyatomic real substances by two-center LennardJones model fluids”. Fluid Phase Equilibria. Vol. 25. 1986. pp. 251-262.

T. Tokumasu, K. Kamijo. “Molecular dynamics study for the thermal conductivity of diatomic liquid”. Superlattices and Microstructures. Vo. 35. 2004. pp. 217-225.

I. Urukova, J. Vorholz, G. Maurer. “Solubility of CO2, CO, and H2 in the ionic liquid BMIMPF6 from monte carlo simulations”. J. Phys. Chem. B. Vol. 109. 2005. pp. 12154-12159.

B. Berne, G. Harp. “On the Calculation of time correlation functions”. Advan. Chem. Phys. Vol. 17. 1970. pp. 63-227. 1

M. Leeuwen. “Derivation of Stockmayer potential parameters for polar fluids”. Fluid Phase Equilibria. Vol. 99. 1994. pp. 1-18.

J. Stoll, J. Vrabec, H. Hasse. “A set of molecular models for carbon monoxide and halogenated hydrocarbons”. J. Chem. Phys. Vol. 119. 2003. pp. 11396-11407.

J. Bouanich, A. Predoi. “Theoretical calculations for line-broadening and pressure-shifting in the fundamental and first two overtone bands of CO–H2”. J. Molec. Struct. Vol. 742. 2005. pp. 183-190.

M. Bojan, W. Steele. “Interactions of diatomic molecules with graphite”. Langmuir. Vol. 3. 1987. pp. 1123-1127.

J. Kottalam, D. Case. “Dynamics of ligand escape from the heme pocket of myoglobin”. J. Am. Chem. Soc. Vol. 110. 1988. pp. 7690-7697.

R. Elber, M. Karplus. “Use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin”. J. Am. Chem. Soc. Vol. 112. 1990. pp. 9161-9175.

S. Pałucha, Z. Gburski, J. Biesiada. “A molecular dynamics study of fullerene–carbon monoxide mixture”. J. Molec. Struc. Vol. 704. 2004. pp. 269-273.

K. Mirsky. “Carbon monoxide molecules in an argon matrix: empirical evaluation of the Ar·Ar, C·Ar and O·Ar potential parameters”. Chem. Phys. Vol. 46. 1980. pp. 445-455.

M. Bojan, W. Steele “Virial coefficients for N2 and CO adsorbed on the graphite basal plane Elektronische”. Langmuir. Vol. 3. 1987. pp. 116-120.

J. Straub, M. Karplus. “Molecular dynamics study of the photodissociation of carbon monoxide from myoglobin: Ligand dynamics in the first 10 ps”. Chem. Phys. Vol. 158. 1991. pp. 221-248.

D. Nutt, M. Meuwly. “Theoretical Investigation of Infrared Spectra and Pocket Dynamics of Photodissociated Carbonmonoxy Myoglobin”. Biophys. J. Vol. 85. 2003. pp. 3612-3623.

P. Fracassi, R. Valle. “Potential models and torsional stability in molecular crystals”. Chem. Phys. Lett. Vol. 104. 1984. pp. 435-439.

P. Fracassi, R. Righini, R. Valle, M. Klein. “Lattice dynamics of solid α-carbon monoxide”. Chem. Phys. Vol. 96. 1985. pp. 361-369.

M. Allen, D. Tildesley. Computer simulation of liquids. 1st ed. Ed. Oxford University Press. New York, USA. 1987. pp. 20-23.

D. Frenkel, B. Smit. Understanding Molecular Simulation. 1st ed. Ed. Academic Press. San Diego, USA. 2002. pp. 201-223.

P. Linstrom, W. Mallard. NIST Standard Reference Database Number 69. NIST Chemistry WebBook, National Institute of Standards and Technology. Available on: http://webbook.nist.gov. Accessed: November 18, 2009.

Descargas

Publicado

2015-05-18

Cómo citar

Hoyos-Madrigal, B. A., & Chejne-Janna, F. (2015). Comparación de modelos moleculares del monóxido de carbono para el cálculo del equilibrio líquido-vapor. Revista Facultad De Ingeniería Universidad De Antioquia, (75), 143–154. https://doi.org/10.17533/udea.redin.n75a14