Imputación de datos espaciales de calidad del aire usando sig-spline e índice de ajuste en redes urbanas de monitoreo
DOI:
https://doi.org/10.17533/udea.redin.n76a09Palabras clave:
interpolación espacial spline, índice de ajuste, modelos espaciales, contaminación del aire, estimación de datos espaciales en áreas pequeñasResumen
Este trabajo presenta un procedimiento para abordar la falta de datos espaciales de calidad del aire en zonas urbanas, con base en el uso de Sistemas de Información Geográfi ca (SIG) y las técnicas de interpolación espacial como una alternativa a los métodos convencionales de imputación estadística. Se comparan dos algoritmos de interpolación espacial: IDW y spline. El procedimiento considera el proceso de interpolación espacial, la validación cruzada con el índice de (IOA), y el análisis de la densidad de muestreo y del coefi ciente de variación utilizando diferentes estadísticos de error. Los mapas de interpolación se complementan con los mapas de gradiente y de gradiente direccional que pueden servir como complementos en la defi nición de puntos de muestreo críticos. El procedimiento se aplica a la imputación de datos de tres contaminantes: NO2 , PM10 (partículas de 10 micras de diámetro) y SST (sólidos suspendidos totales) a partir de muestras de datos observados en la ciudad de Medellín (Colombia).
Descargas
Citas
O. Leal, M. Mendoza, E. Carranza. “Análisis y modelamiento espacial de información climática en la cuenca de Cuitzeo, México”. Invest. Geog. no. 72. 2010. pp. 49-67.
J. Gómez, J. Etchevers, A. Monterroso, C. Gay, J. Campo, M. Martínez. “Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information”. Atmósfera. Vol. 21. 2008. pp. 35-56.
L. Qu, L. Li, Y. Zhang, J. Hu. “PPCA-based missing data imputation for traffic flow volume: A systematical approach”. IEEE Transactions on Intelligent Transportation Systems. Vol. 10. 2009. pp. 512-522.
K. Grønskei, S. Walker, F. Gram. “Evaluation of a model for hourly spatial concentration distributions”. Atmospheric Environment. Part B. Urban Atmosphere. Vol. 27. 1993. pp. 105-120.
M. Rooney, R. Arku, K. Dionisio, C. Paciorek, A. Friedman, H. Carmichael, et al. “Spatial and temporal patterns of particulate matter sources and pollution in four communities in Accra, Ghana”. Science of the Total Environment. Vol. 435-436. 2012. pp. 107-114.
M. Albert, M. Schaap, A. Manders, C. Scannell, C. O’Dowd, G. Leeuw. “Uncertainties in the determination of global sub-micron marine organic matter emissions”. Atmospheric Environment. Vol. 57. 2012. pp. 289-300.
M. Bechle, D. Millet, J. Marshall. “Remote sensing of exposure to NO2 : satellite versus ground based measurement in a large urban area”. Atmospheric Environment. Vol. 69. 2013. pp. 345-353.
M. Žukovič, D. Hristopulos. “Environmental time series interpolation based on Spartan random processes”. Atmospheric Environment. Vol. 42. 2008. pp. 7669-7678.
A. Pollice, G. Jona. “Two Approaches to Imputation and Adjustment of Air Quality Data from a Composite Monitoring Network”. Journal of Data Science. Vol. 7. 2009. pp. 43-59.
C. Willmott, S. Ackleson, R. Davis, J. Feddema, K. Klink, D. Legates, et al. “Statistics for the Evaluation and Comparison of Models”. J. Geophys. Res. Vol. 90. 1985. pp. 8995-9005.
C. Willmott, S. Robeson, K. Matsuura. “A refined index of model performance”. International Journal of Climatology. Vol. 32. 2012. pp. 2088-2094.
J. Urrutia, R. Palomino, H. Salazar. “Metodología para la imputación de datos faltantes en Meteorología”. Scientia et Technica. no. 46. 2010. pp. 44-49.
D. Deligiorgi, K. Philippopoulos. Spatial Interpolation Methodologies in Urban Air Pollution Modeling: Application for the Greater Area of Metropolitan Athens, Greece. 2011. Available on: http://cdn.intechopen.com/pdfs-wm/17390.pdf. Accessed: June 01, 2014.
Ü. Şahin, C. Bayat, O. Uçan. “Application of cellular neural network (CNN) to the prediction of missing air pollutant data”. Atmospheric Research. Vol. 101. 2011. pp. 314-326.
B. Huang, B. Wu, M. Barry. “Geographically and temporally weighted regression for modeling spatiotemporal variation in house prices”. International Journal of Geographical Information Science. Vol. 24. 2010. pp. 383-401.
W. Tobler. “A computer movie simulating urban growth in the Detroit region”. Economic Geography. Vol. 46. 1970. pp. 234-240.
P. Kang. “Locally linear reconstruction based missing value imputation for supervised learning”. Neurocomputing. Vol. 118. 2013. pp. 65-78.
R. Bilonick. “Risk qualified maps of hydrogen ion concentration for the New York state area for 1966- 1978”. Atmos. Environ. Vol. 17. 1983. pp. 2513-2524.
R. Sivacoumar, K. Thanasekaran. “Line source model for vehicular pollution prediction near roadways and model evaluation through statistical analysis”. Environmental Pollution. Vol. 104. 1999. pp. 389-395.
G. Polydoras, J. Anagnostopoulos, G. Bergeles. “Air quality predictions: dispersion model vs. Box–Jenkins stochastic models. An implementation and comparison for Athens, Greece”. Applied Thermal Engineering. Vol. 18. 1998. pp. 1037-1048.
M. Lorber, A. Eschenroeder, R. Robinson. “Testing the USA EPA’s ISCST-Version 3 model on dioxins: a comparison of predicted and observed air and soil concentrations”. Atmospheric Environment. Vol. 34. 2000. pp. 3995-4010.
A. Kousa, J. Kukkonen, A. Karppinen, P. Aarnio, T. Koskentalo. “Statistical and diagnostic evaluation of a newgeneration urban dispersion modeling system against an extensive dataset in the Helsinki area”. Atmospheric Environment. Vol. 35. 2001. pp. 4617-4628.
D. Rojas. “Spatial interpolation techniques for estimating levels of pollutant concentrations in the atmosphere”. Rev. mex. de física. Vol. 53. 2007. pp. 447- 454.
D. Ibarra. “Distribución espacial del pH de los suelos agrícolas de Zapopan, Jalisco, México”. Agric. Téc. Méx. Vol. 35. 2009. pp. 267-276.
Y. Xie, T. Chen, M. Lei, J. Yang, Q. Guo, B. Song, X. Zhou. “Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis”. Chemosphere. Vol. 82. 2011. pp. 468-476.
E. Jabot, I. Zin, T. Lebel, A. Gautheron, C. Obled. “Spatial interpolation of sub-daily air temperatures for snow and hydrologic applications in mesoscale Alpine catchments”. Hydrological Processes. Vol. 26. 2012. pp. 2618-2630.
K. Stahl, R. Moore, J. Floyer, M. Asplin, I. McKendry. “Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density”. Agricultural and Forest Meteorology. Vol. 139. 2006. pp. 224-236.
J. Li, A. Heap. “A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors”. Ecological Informatics. Vol. 6. 2011. pp. 228-241.
J. Li, A. Heap. “Spatial interpolation methods applied in the environmental sciences: A review”. Environmental Modelling & Software. Vol. 53. 2014. pp. 173-189
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2015 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.