Erosion and progradation in the Atrato River delta: A spatiotemporal analysis with Google Earth Engine


  • José Daniel Vélez-Castaño University of Antioquia
  • Gloria Liliana Betancurth-Montes University of Antioquia
  • Julio Eduardo Cañón-Barriga University of Antioquia



coastal zones, computer application, remote sensing, algorithms, geodynamics


The Atrato River Delta in Northwestern Colombia has experienced notable geomorphological changes in its shoreline in recent years. We analyze these changes, associated with erosion and progradation, using Landsat imagery and Google Earth Engine (GEE) algorithms to automatically identify the changes in an annual basis over 33 years (1986–2019). We compare the results with manual delineations on the same imagery using ArcGIS, obtaining similar outcomes, although GEE is much more efficient in processing large amounts of imagery compared with handmade procedures. We identify with good accuracy trends in erosion and progradation areas along the mouths and sides of the delta. Our algorithm performs well at delineating the shorelines, although special care must be taken to clean the images from clouds and shadows that may alter the definition of the shoreline. Results show that the Atrato delta has lost around 10 km2 due to erosion and has gained around 18 km2 in progradation during the period of assessment. Overall, progradation is the dominant process at the delta’s mouths, while erosion is dominant only in areas far from the mouths, which agrees with a river-dominated environment of high sediment loads and is coherent with other studies made in the region. The algorithm in GEE is a versatile tool, appropriate to assess short and long-term changes of coastal areas that do not count with land-based information.

= 1590 veces | PDF
= 1016 veces|


Download data is not yet available.

Author Biographies

José Daniel Vélez-Castaño, University of Antioquia

Environmental School, Faculty of Engineering.

Gloria Liliana Betancurth-Montes, University of Antioquia

Environmental School, Faculty of Engineering. Environmental Engineering Research Center (CIAT).

Julio Eduardo Cañón-Barriga, University of Antioquia

Environmental School, Faculty of Engineering.


V. Maselli and et al ., “Delta growth and river valleys: The influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea),” Quaternary Science Reviews , vol. 99, September 1 2014. [Online]. Available:

F. G. Renaud and et al ., “Tipping from the Holocene to the Anthropocene: How threatened are major world deltas?” Current Opinion in Environmental Sustainability , vol. 5, no. 6, December 2013. [Online]. Available:

X. Li, J. P. Liu, Y. Saito, and V. L. Nguyen, “Recent evolution of the Mekong Delta and the impacts of dams,” Earth-Science Reviews , vol. 175, December 2017. [Online]. Available:

A. S. Parra and J. D. Restrepo, “El colapso ambiental en el río Patía, Colombia: Variaciones morfológicas y alteraciones en los ecosistemas de manglar,” Latin American Journal of Aquatic Research , vol. 42, no. 1, March 2014. [Online]. Available:

J. D. Restrepo and S. A. López, “Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America,” Journal of South American Sciences , vol. 25, no. 1, February 2008. [Online]. Available:

S. Longhitano and A. Colella, “Geomorphology, sedimentology and recent evolution of the anthropogenically modified Simeto River delta system (eastern Sicily, Italy),” Sedimentary Geology , vol. 194, no. 3-4, February 2007. [Online]. Available:

P. P. Vallejo and et al ., “Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia,” Marine Pollution Bulletin , vol. 111, no. 1-2, October 15 2016. [Online]. Available:

C. Kuenzer and et al ., “Remote sensing of river delta inundation: Exploiting the potential of coarse spatial resolution, temporally-dense MODIS time series,” Remote Sensing , vol. 7, July 2015. [Online]. Available:

H. Meyer and S. Nijhuis, “Delta urbanism: Planning and design in urbanized deltas-comparing the Dutch delta with the Mississippi river delta,” Journal of Urbanism International Research on Placemaking and Urban Sustainability , vol. 6, no. 2, July 2013. [Online]. Available:

M. B. Dolozi, L. S. N. Kalindekafe, C. Ngongondo, and Z. Dulanya, “A comparative analysis of the distribution, composition and geochemistry of surface sediments in the Linthipe and Songwe River Deltas of Lake Malawi,” Journal of African Earth Sciences , vol. 60, no. 3, May 2011. [Online]. Available:

R. Kröger and et al ., “Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches,” Agricultural Water Management , vol. 96, no. 7, July 2009. [Online]. Available:

J. D. Restrepo, “Deltas: Visión general y procesos morfodinámicos,” in Deltas de Colombia: morfodinámica y vulnerabilidad ante el cambio global , J. D. Restrepo, Ed. Medellín, Colombia: Universidad EAFIT, 2008, pp. 27–245.

J. M. Díaz, J. M. Renjifo, and S. Montes, Deltas y Estuarios de Colombia . Cali, Colombia: Comité Editorial Banco de Occidente, 2007.

J. H. Vann, “Landform-vegetation relationships in the Atrato Delta,” Annals of the association of the American Geographer , vol. 49, no. 4, December 1959. [Online]. Available:

J. D. Restrepo and B. Kjerfve, “The Pacific and Caribbean Rivers of Colombia: Water discharge, sediment transport and dissolved loads,” in Environmental Geochemistry in Tropical and Subtropical Environments , L. Drude, R. Erthal, E. K. Duursma, and J. joao, Eds. New York, USA: Springer-Verlag, 2004, pp. 169–187.

J. D. Restrepo and E. Alvarado, “Assessing major environmental issues in the Caribbean and Pacific Coast of Colombia, South America: An overview of fluvial fluxes, coral reef degradation and mangrove ecosystems impacted by river diversion,” in Treatise on Estuarine and Coastal Science , E. Wolanski and D. S. McLusky, Eds. New York, USA: Academic Press, 2011, pp. 289–314.

C. A. Escobar, L. Velásquez, and F. Posada, “Marine currents in the Gulf of Urabá, Colombian Caribbean Sea,” Journal of Coastal Research , vol. 31, no. 6, November 2015. [Online]. Available:

J. F. Blanco, La exploración del golfo de Urabá: 2007- 2013. Un viaje a lo largo del estuario más grande del Caribe colombiano . Medellín, Colombia: Universidad de Antioquia, 2013.

C. García. (2007) Atlas del golfo de Urabá: Una mirada al Caribe de Antioquia y Chocó. INVEMAR. Santa Marta, Colombia. [Online]. Available:

S. Post, “Morphological modelling of the Atrato river delta in Colombia,” M.S. thesis, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands, 2011.

J. F. Blanco, “Cambios globales en los manglares del golfo de Urabá (Colombia): Entre la cambiante línea costera y la frontera agropecuaria en expansión,” Actualidades Biológicas , vol. 38, no. 104, June 2016. [Online]. Available:

N. Gorelick and et al ., “Google Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Environment , vol. 202, December 1 2017. [Online]. Available:

A. Alonso, R. Muñoz, R. E. Kennedy, and C. Murcia, “Wetland landscape spatio-temporal degradation dynamics using the new Google Earth Egine cloud-based platform: Opportunities for non-specialist in remote sensing,” Wetlands and Coastal Systems , vol. 59, no. 5, January 2016. [Online]. Available:

(2010) Atlas climatológico de colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM. Accessed Jun. 13, 2018. [Online]. Available:

J. P. M. Syvitski and A. J. Kettner, “Sediment flux and the Anthropocene,” Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences , vol. 369, no. 1938, March 2011. [Online]. Available:

(2009) Series de tiempo. Unidad de Planeación Minero Energética UPME. Accessed Aug. 07, 2017. [Online]. Available:

A. Morita, S. Touyama, T. Kuwae, O. Nishimura, and T. Sakamaki, “Effects of watershed land-cover on the biogeochemical properties of estuarine tidal flat sediments: A test in a densely-populated subtropical island,” Estuarine, Coastal and Shelf Science , vol. 184, January 5 2017. [Online]. Available:

S. Abbot, J. P. Julian, I. Kamarinas, and K. M. Meitzen, “State-shifting at the edge of resilience: River suspended sediment responses to land use change and extreme storms,” Geomorphology , vol. 305, September 2017. [Online]. Available:

D. Mateos and et al ., “Assessing consequences of land cover changes on sediment deliveries to coastal waters at regional level over the last two decades in the northwestern Mediterranean Sea,” Ocean and Coastal Management , vol. 116, November 2015. [Online]. Available:

A. Arroyave, J. F. Blanco, and A. Taborda, “Exportación de sedimentos desde cuencas hidrográficas de la vertiente oriental del Golfo de Urabá: Influencuas climáticas y antrópicas,” Revista Ingenierías Universidad de Medellín , vol. 11, no. 20, pp. 13–30, 2012.

J. F. Blanco and et al ., “Deforestación y sedimentación en los manglares del Golfo de Urabá. síntesis de los impactos sobre la fauna macrobéntica e íctica en el delta del río Turbo,” Gestión y Ambiente , vol. 16, no. 2, pp. 19–36, 2013.

T. Cuesta and G. Ramírez, “Evaluación interdimensional de impactos ambientales sobre la dimensión física ocasionados por cultivos de palma aceitera y la ganadería extensiva en la selva húmeda tropical del Bajo Atrato, Chocó, Colombia,” Gestión y Ambiente , vol. 12, no. 3, pp. 37–48, 2009.

J. C. Restrepo and J. D. Restrepo, “Efectos naturales y antrópicos en la producción de sedimentos de la cuenca del río Magdalena,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas , vol. 29, no. 111, pp. 239–254, Jun. 2005.

B. O. Posada and W. Henao. (2008) Diagnóstico de la erosión en la zona costera del Caribe Colombiano. INVEMAR. Santa Marta, Colombia. [Online]. Available:

M. O. Hayes, “Barrier island morphology as a function of tidal and wave regime,” in Barrier Islands , S. P. Leatherman, Ed. London, UK: London Academic Press, 1979, pp. 3–22.

C. A. Escobar, “Relevancia de procesos costeros en la hidrodinámica del Golfo de Urabá (Caribe Colombiano),” Boletín de Investigaciones Marinas y Costeras , vol. 40, no. 2, December 1 2011. [Online]. Available:

M. Qi’an and et al ., “A seismic geomorphology study of the fluvial and lacustrine-delta facies of the Cretaceous Quantou-Nenjiang Formations in Songliao Basin, China,” Marine and Petroleum Geology , vol. 78, December 2016. [Online]. Available:

W. E. Galloway, “Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems,” Deltas: Models for explorations , pp. 87–98, 1975.

USGS. U.S. Geological Survey. Accessed Sep. 03, 2019. [Online]. Available:

NDVI, Mapping a Function over a Collection, Quality Mosaicking. Google Inc. Accessed Apr. 17, 2018. [Online]. Available:

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics , vol. 9, no. 1, January 1979. [Online]. Available:

G. Donchyts and et al ., “Earth’s surface water change over the past 30 years,” Nature Climate Change , vol. 6, no. 9, August 2016. [Online]. Available:

N. G. Rangel, G. Anfuso, and A. T. Williams, “Coastal erosion along the Caribbean coast of Colombia: Magnitudes, causes and management,” Ocean and Coastal Management , vol. 114, September 2015. [Online]. Available:

H. Liu, “Shoreline mapping and coastal change studies using remote sensing imagery and LIDAR data,” in Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management , X. Yang, Ed. Berlin, Germany: Springer-Verlag, 2009, pp. 297–322

Z. X. Chu, X. G. Sun, S. K. Zhai, and K. H. Xu, “Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images,” Marine Geology , vol. 227, no. 1-2, March 15 2006. [Online]. Available:

M. J. Nieto, “Estudio morfodinámico del delta del río Atrato, golfo de Urabá, a partir de cartografía histórica y percepción remota,” M.S. thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2004.

Cold & warm episodes by season. National Oceanic and Atmospheric Administration NOAA. Accessed July. 02, 2019. [Online]. Available:

G. Bernal, L. J. Montoya, C. Garizábal, and F. M. Toro, “La complejidad de la dimensión física en la problemática costera del Golfo de Urabá, Colombia,” Gestión y Ambiente , vol. 8, no. 1, pp. 123–135, 2005.

K. Robertson and N. Martínez, “Cambios del nivel del mar durante el holoceno en el litoral Caribe Colombiano,” Cuadernos de Geografía: Revista Colombiana de Geografía , vol. 8, no. 1, pp. 168–198, 1999.

Datos abiertos cartografía y geografía. Instituo Geográfico Agustín Codazzi IGAC. Accessed Sep. 04, 2019. [Online]. Available:

C. Velez and N. Aguirre, “Influencia del río Atrato en el golfo de Urabá durante el holoceno tardío, mar Caribe Colombiano,” Boletín de investigaciones marinas y costeras - INVEMAR , vol. 45, no. 1, 2016. [Online]. Available:

P. Chevillot, A. Molina, L. Giraldo, and C. Molina, “Estudio hidrológico y geológico del Golfo de Urabá,” CIOH, Boletín Científico , vol. 14, pp. 79–90, 1993.

A. M. Álvarez and G. R. Bernal, “Estimación del campo de transporte neto de sedimentos en el fondo de Bahía Colombia con base en análisis de tendencia del tamaño de grano,” Avances en Recursos Hidráulicos , vol. 16, pp. 41–50, 2007.

Y. Palacios, K. Caballero, and J. Olivero, “Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia,” Chemosphere , vol. 193, February 2018. [Online]. Available:

Y. Palacios, J. D. de la Rosa, and J. Olivero, “Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific,” Environmental Pollution , vol. 256, January 2020. [Online]. Available:




How to Cite

Vélez-Castaño, J. D., Betancurth-Montes, G. L., & Cañón-Barriga, J. E. (2021). Erosion and progradation in the Atrato River delta: A spatiotemporal analysis with Google Earth Engine. Revista Facultad De Ingeniería Universidad De Antioquia, (99), 83–98.