Graphene samples preparation and some possible uses in developing optical communication devices

  • Juan Diego Zapata-Caro Universidad de Antioquia - Mackenzie Presbyterian University
  • Ana María Cárdenas-Soto Universidad de Antioquia
  • Rodrigo Henao-Henao Universidad de Antioquia
  • Eunezio Antonio Thoroh de Souza Mackenzie Presbyterian University
Keywords: Graphene, Raman spectroscopy, flakes and exfoliation method


Graphene is a two-dimensional material which has been attracting the attention of worldwide scientific community, motivated by their optical and electronic properties. There are different methods for obtaining grapheme; however, the micromechanical exfoliation process is the simplest and it allows samples with high quality to be obtained. In this paper, the preparation process of graphene flakes by exfoliation method and their characterization by Raman spectroscopy are shown. Moreover, some possible uses of graphene flakes applied to develop optical communication high speed devices are described.

= 221 veces | PDF
= 236 veces|


Download data is not yet available.

Author Biographies

Juan Diego Zapata-Caro, Universidad de Antioquia - Mackenzie Presbyterian University
Grupo de investigación en Telecomunicaciones Aplicadas (GITA), Facultad de Ingeniería
Ana María Cárdenas-Soto, Universidad de Antioquia

Doctora en Comunicaciones Ópticas.

Profesora, Facultad de Ingeniería, Departamento de Ingeniería Electrónica.

Rodrigo Henao-Henao, Universidad de Antioquia

Doctor en Física.

Profesor, Instituto de Física, Grupo de Investigación Óptica y Fotónica.

Eunezio Antonio Thoroh de Souza, Mackenzie Presbyterian University

Coordinador de MackGraphe - Graphene and Nano-Material Research Center 


F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari. “Graphene photonics and optoelectronics”. Nature photonics. Vol. 4. 2010. pp. 611-622.

H. Raza. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. 1st ed. Ed. Springer. Berlin, Germany. 2012. pp. 598-599.

A. Geim, K. Novoselov. “The rise of graphene”. Nature Mater. Vol. 6. 2007. pp. 183-191.

M. Glazov, S. Ganichev. “High frequency electric field induced nonlinear effects in graphene”. Physics Reports. Vol. 535. 2014. pp. 101-138.

P. Blake, E. Hill, A. Castro, K. Novoselov, D. Jiang, R. Yang, T. Booth, A. Geim. “Making graphene visible”. Applied Physics Letters. Vol. 91. 2007. pp. 1-3.

A. Castro, F. Guinea, N. Peres, K. Novoselov, A. Geim. “The electronic properties of graphene”. Reviews of Moderns. Vol. 81. 2009. pp. 109-160.

L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus. “Raman spectroscopy in graphene”. Physics Reports. Vol. 473. 2009. pp. 51-87.

K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, et al. “Two-dimensional gas of Massless Dirac Fermions in Graphene”. Nature. Vol. 438. 2005. pp. 197-200.

H. Rosa, E. Souza. “Bandwidth optimization of a Carbon Nanotubes mode-locked Erbium-doped fiber laser”. Opt. Fiber Technol. Vol. 18. 2012. pp. 59-62.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, et al. “Broadband graphene polarizer”. Nature Photonics. Vol. 5. 2011. pp. 411-414.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, et al. “Ultrafast–all optical graphene Modulator”. Nano Lett. Vol. 14. 2014. pp. 955-959.

W. Cho, J. Kim, H. Lee, S. Bae, B. Hong, S. Choi, et al. “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm”. Optics Letters. Vol. 36. 2011. pp. 4089-4091.

M. Liu, X. Yin, E. Ulin, B. Geng, T. Zentgraf, L. Ju, et al. “A graphene-based broadband optical modulator”. Nature. Vol. 474. 2011. pp. 64-67.

How to Cite
Zapata-Caro J. D., Cárdenas-Soto A. M., Henao-Henao R., & Thoroh de Souza E. A. (2015). Graphene samples preparation and some possible uses in developing optical communication devices. Revista Facultad De Ingeniería Universidad De Antioquia, (75), 108-117.