Graphene samples preparation and some possible uses in developing optical communication devices

Authors

DOI:

https://doi.org/10.17533/udea.redin.n75a11

Keywords:

Raman spectroscopy, flakes and exfoliation method, graphene

Abstract

Graphene is a two-dimensional material which has been attracting the attention of worldwide scientific community, motivated by their optical and electronic properties. There are different methods for obtaining grapheme; however, the micromechanical exfoliation process is the simplest and it allows samples with high quality to be obtained. In this paper, the preparation process of graphene flakes by exfoliation method and their characterization by Raman spectroscopy are shown. Moreover, some possible uses of graphene flakes applied to develop optical communication high speed devices are described.

|Abstract
= 389 veces | PDF
= 326 veces|

Downloads

Download data is not yet available.

Author Biographies

Juan Diego Zapata-Caro, University of Antioquia

Research Group in Applied Telecommunications (GITA), Faculty of Engineering. Graphene and Nanomaterials Research Center (MackGraphe), Mackenzie Presbyterian University.

Ana María Cárdenas-Soto, University of Antioquia

Doctor in Optical Communications. Professor, Faculty of Engineering, Department of Electronic Engineering.

Rodrigo Henao-Henao, University of Antioquia

Ph.D. in Physics. Professor, Institute of Physics, Optics and Photonics Research Group.

Eunezio Antonio Thoroh de Souza, Mackenzie Presbyterian University

Graphene and Nanomaterials Research Center (MackGraphe), Mackenzie Presbyterian University.

References

F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari. “Graphene photonics and optoelectronics”. Nature photonics. Vol. 4. 2010. pp. 611-622.

H. Raza. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. 1st ed. Ed. Springer. Berlin, Germany. 2012. pp. 598-599.

A. Geim, K. Novoselov. “The rise of graphene”. Nature Mater. Vol. 6. 2007. pp. 183-191.

M. Glazov, S. Ganichev. “High frequency electric field induced nonlinear effects in graphene”. Physics Reports. Vol. 535. 2014. pp. 101-138.

P. Blake, E. Hill, A. Castro, K. Novoselov, D. Jiang, R. Yang, T. Booth, A. Geim. “Making graphene visible”. Applied Physics Letters. Vol. 91. 2007. pp. 1-3.

A. Castro, F. Guinea, N. Peres, K. Novoselov, A. Geim. “The electronic properties of graphene”. Reviews of Moderns. Vol. 81. 2009. pp. 109-160.

L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus. “Raman spectroscopy in graphene”. Physics Reports. Vol. 473. 2009. pp. 51-87.

K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, et al. “Two-dimensional gas of Massless Dirac Fermions in Graphene”. Nature. Vol. 438. 2005. pp. 197-200.

H. Rosa, E. Souza. “Bandwidth optimization of a Carbon Nanotubes mode-locked Erbium-doped fiber laser”. Opt. Fiber Technol. Vol. 18. 2012. pp. 59-62.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, et al. “Broadband graphene polarizer”. Nature Photonics. Vol. 5. 2011. pp. 411-414.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, et al. “Ultrafast–all optical graphene Modulator”. Nano Lett. Vol. 14. 2014. pp. 955-959.

W. Cho, J. Kim, H. Lee, S. Bae, B. Hong, S. Choi, et al. “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm”. Optics Letters. Vol. 36. 2011. pp. 4089-4091.

M. Liu, X. Yin, E. Ulin, B. Geng, T. Zentgraf, L. Ju, et al. “A graphene-based broadband optical modulator”. Nature. Vol. 474. 2011. pp. 64-67.

Downloads

Published

2015-05-17

How to Cite

Zapata-Caro, J. D., Cárdenas-Soto, A. M., Henao-Henao, R., & Thoroh de Souza, E. A. (2015). Graphene samples preparation and some possible uses in developing optical communication devices. Revista Facultad De Ingeniería Universidad De Antioquia, (75), 108–117. https://doi.org/10.17533/udea.redin.n75a11