Using factorial design to increase the efficiency on a small-scale ethanol distillation

Keywords: Ethanol distillation, factorial design, small-scale, process optimization

Abstract

This research assessed experimentally the performance of a small-scale ethanol/water distillation column. Statistical analysis was performed using Statistica® 7.0, considering a significance level of 90% (p < 0.10), to evaluate if the independent variables (feed stream ethanol concentration and flow rate) influence on the production of ethanol in accordance with the Brazilian legislation, i.e., a Hydrous Ethanol Fuel with ethanol content between 92.5 and 93.8 wt%. The results demonstrated that the influence of the feed stream ethanol concentration and flow rate were significant for both the top product concentration and the recovery ratio. The recovery ratio of ethanol was above 80%, demonstrating that the performance of the small-scale column is satisfactory.

|Abstract
= 128 veces | PDF
= 130 veces|

Downloads

Download data is not yet available.

Author Biographies

Flávio Dias Mayer, Federal University of Santa Maria

Department of Chemical Engineering

Giseane Fumagalli Schettert, Federal University of Santa Maria

Department of Chemical Engineering

Paulo Roberto dos Santos Salbego, Federal University of Santa Maria

Department of Chemical Engineering

Nicholas Islongo Canabarro, Federal University of Santa Maria

Department of Chemical Engineering

Vanessa Baldo, Federal University of Santa Maria

Department of Chemical Engineering

Marcio Antonio Mazutti, Federal University of Santa Maria

Department of Chemical Engineering

Edson Luis Foletto, Federal University of Santa Maria

Department of Chemical Engineering

Ronaldo Hoffmann, Federal University of Santa Maria

Department of Chemical Engineering

References

Empresa de Pesquisa Energética, Balanço Energético Nacional, Rio de Janeiro , 2011. [Online]. Available: https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2011.pdf. Accessed: Jun. 9, 2015.

J. Puppim, “The policymaking process for creating competitive assets for the use of biomass energy: the Brazilian alcohol programme”, Renew. Sustain. Energy Rev ., vol. 6, no. 1-2, pp. 129-140, 2002.

F. Rosillo and L. Cortez, “Towards ProAlcool II - A review of the Brazilian bioethanol programme”, Biomass and Bioenergy, vol. 14, no. 2, pp. 115-124, 1998.

J. Rico, S. Mercedes and I. Sauer, “Genesis and Consolidation of the Brazilian Bioethanol: A Review of Policies and Incentive Mechanisms”, Renew. Sustain. Energy Rev., vol. 14, pp. 1874-1887, 2010.

G. Sorda, M. Banse and C. Kemfert, “An Overview of Biofuel Policies Across the World”, Energy Policy, vol. 38, pp. 6977-6988, 2010.

M. Rajcaniova, D. Drabik and P. Ciaian, “How policies affect international biofuel price linkages”, Energy Policy, vol. 59, pp. 857-865, 2013.

Associação Nacional dos Fabricantes de Veículos Automotores (ANFAVEA), Anuário da Indústria Automobilística Brasileira, 2013. [Online]. Available: http://www.anfavea.com.br/anuario2013/anuario2013. zip. Accessed: Jun. 9, 2015.

X. Du and M. Carriquiry, “Flex-fuel Vehicle Adoption and Dynamics of Ethanol Prices: Lessons from Brazil”, Energy Policy , vol. 59, pp. 507-512, 2013.

A. Veiga and P. Ramos, “PROÁLCOOL e evidências de concentração na produção e processamento de cana- de-açúcar”, Informações Econômicas , vol. 36, pp. 48- 61, 2006.

A. Hira, “Sugar Rush: Prospects for a Global Ethanol Market”, Energy Policy, vol. 39, pp. 6925-6935, 2011.

L. Ortiz, S. Schlesinger and S. Noronha, Agronegócios e Biocombustíveis: Uma Mistura Explosiva , 2006. [Online]. vailable: http://www.natbrasil.org.br/docs/biocombustiveis/biocomb_port.pdf. Accessed: Jun. 9, 2015.

B. Ribeiro,“Beyond Commonplace Biofuels: Social Aspects of Ethanol”, Energy Policy , vol. 57, pp. 355- 362, 2013.

C. Runge and B. Senauer, “How Biofuels Could Starve the Poor”, Foreign Aff ., vol. 86, pp. 41-53, 2007.

M. Harvey and S. Pilgrim, “The New Competition for Land: Food, Energy, and Climate Change”, Food Policy , vol. 36, pp. S40-S51, 2011.

A. Buyx and J. Tait, “Biofuels : Ethics and Policy- Making”, Biofuels, Bioprod. Biorefining , vol. 5, pp. 631- 639, 2011.

H. Azadi, S. Jong, B. Derudder, P. Maeyer and F. Witlox, “Bitter Sweet: How Sustainable is Bio-Ethanol Production in Brazil?”, Renew. Sustain. Energy Rev ., vol. 16, pp. 3599-3603, 2012.

R. Janssen and D. Rutz, “Sustainability of Biofuels in Latin America: Risks and Opportunities”, Energy Policy , vol. 39, pp. 5717-5725, 2011.

A. Walter et al ., “Sustainability Assessment of Bio- Ethanol Production in Brazil Considering Land Use Change, GHG Emissions and Socio-Economic Aspects”, Energy Policy, vol. 39, pp. 5703-5716, 2011.

H. Nuñez, H. Önal and M. Khanna, “Land Use and Economic Effects of Alternative Biofuel Policies in Brazil and the United States”, Agric. Econ ., vol. 44, pp. 487-499, 2013.

F. Mayer, R. Hoffmann and R. Hoffmann, “An Innovative Project Involving an Appropriate Hybrid Distillation System for Small-Scale Ethanol Fuel Production”, Chem. Eng. Commun ., vol. 200, pp. 563-574, 2013.

Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP), Resolução ANP n° 07/2011 . [Online]. Available on: http://nxt.anp.gov.br/NXT/gateway.dll/leg/resolucoes_anp/2011/fevereiro/ranp%207%20-%202011.xml. Accessed: Jun. 9, 2015.

C. Vasconcelos, M. Wolf, “Optimisation, Dynamics and Control of a Complete Azeotropic Distillation: New Strategies and Stability Considerations”, in International Conference on Distillation and Absorption , Baden-Baden, Germany, 2002, pp. 1-20.

F. Mayer, G. Schettert, R. Michel Jr., E. Foletto and R. Hoffmann, “Operation Parameters of a Small Scale Batch Distillation Column for Hydrous Ethanol Fuel (HEF) production”, Ing. Investig ., vol. 35, pp. 31-35, 2015.

A. Oterhals, B. Kvamme and M. Berntssen, “Modeling of a Short-Path Distillation Process to Remove Persistent Organic Pollutants in Fish Oil Based on Process Parameters and Quantitative Structure Properties Relationships”, Chemosphere , vol. 80, pp. 83-92, 2010.

N. Long and M. Lee, “Design and optimization of a dividing wall column by factorial design”, Korean J. Chem. Eng., vol. 29, pp. 567-573, 2012. 2

N. Long, Y. Kwon and M. Lee, “Design and Optimization of Thermally Coupled Distillation Schemes for the Trichlorosilane Purification Process”, Appl. Therm. Eng ., vol. 59, pp. 200-210, 2013.

G. Chen, Y. Lu, W. Krantz, R. Wang and A. Fane, “Optimization of Operating Conditions for a Continuous Membrane Distillation Crystallization Process With Zero Salty Water Discharge”, J. Membr. Sci ., vol. 450, pp. 1-11, 2014.

P. Onsekizoglu, K. Bahceci and J. Acar, “The Use of Factorial Design for Modeling Membrane Distillation”, J. Membr. Sci ., vol. 349, pp. 225-230, 2010.

A. Sun, W. Kosar, Y. Zhang and X. Feng, “Vacuum Membrane Distillation for Desalination of Water Using Hollow Fiber Membranes”, J. Membr. Sci ., vol. 455, pp. 131-142, 2014.

M. Bezerra, R. Santelli, E. Oliveira, L. Villar and L. Escaleira, “Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry”, Talanta, vol. 76, pp. 965-977, 2008.

M. Rodrigues and A. Iemma, Planejamento de Experimentos e Otimização de Processos , 2 nd ed. Campinas, Brazil: Cárita Editora, 2014. 32. H. Kister, Distillation Design , 1 st ed. New York, USA: McGraw-Hill, 1992.

H. Kister, Distillation Design, 1st ed. New York, USA: McGraw-Hill, 1992.

Published
2016-03-18
How to Cite
Dias Mayer F., Fumagalli Schettert G., dos Santos Salbego P. R., Islongo Canabarro N., Baldo V., Mazutti M. A., Foletto E. L., & Hoffmann R. (2016). Using factorial design to increase the efficiency on a small-scale ethanol distillation. Revista Facultad De Ingeniería Universidad De Antioquia, (78), 48-54. https://doi.org/10.17533/udea.redin.n78a06