Lightning activity over large cities located in mountainous tropical zone and its relationship with particulate matter PM10 distribution. Bogotá city case




Lightning activity, Pollution, PM10, Urban heat island


This paper presents an analysis on the influence of anthropogenic phenomena over the lightning activity in large cities located in mountainous region of tropical zone, specifically in Bogotá City. Some preliminary results show an increase of lightning activity between 33% and 340% for the period under study (2007–2012), when a comparison between urban and rural adjacent zone is carried out. An additional analysis of the influence of pollution on lightning activity was also carried out; this analysis shows that there is a tendency of correlation between number of strokes and particulate matter (PM10) for the zones under study with the highest levels of contamination of the city. In order to achieve the goals of this study, data from one of the Colombian Lightning Location Systems (SID) and the monitoring network of air quality of Bogotá were used. The results are consistent with other studies carried out in different cities of the world. 

= 327 veces | PDF
= 368 veces|


Download data is not yet available.

Author Biographies

Diego Fernando Del Río-Trujillo, National University of Colombia

Department of Electrical, Electronic and Computer Engineering.

Camilo Younes-Velosa, National University of Colombia

Department of Electrical, Electronic and Computer Engineering.

Juan Diego Pulgarín-Rivera, University of the North

Department of Electrical and Electronic Engineering.


J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. Hoboken, USA: John Wiley & Sons, Inc., 2016.

L. Ángel, A. Ramírez, and E. Domínguez, “Isla de calor y cambios espacio-temporales de la temperatura en la ciudad de Bogotá,” Rev. Acad. Colomb. Ciencias Exactas, Físicas y Naturales, vol. 34, no. 101, pp. 173-184, 2010.

N. E. Westcott, “Summertime Cloud-to-Ground Lightning Activity around Major Midwestern Urban Areas,” Journal of Applied Meteorology, vol. 34, pp. 1633-1642, 1995.

W. Farias, O. Pinto, I. Pinto, and K. P. Naccarato, “The influence of urban effect on lightning activity: Evidence of weekly cycle,” Atmospheric Research, vol. 135-136, pp. 370 373, 2014.

C. A. Morales, R. P. da Rocha, and R. Bombardi, “On the development of summer thunderstorms in the city of São Paulo: Mean meteorological characteristics and pollution effect,” Atmospheric Research, vol. 96, no. 2-3, pp. 477-488, 2010.

W. Farias, O. Pinto, K. P. Naccarato, and I. Pinto, “Anomalous lightning activity over the Metropolitan Region of São Paulo due to urban effects,” Atmospheric Research, vol. 91, no. 2-4, pp. 485-490, 2009.

I. Pinto, O. Pinto, M. Gomes, and N. J. Ferreira, “Urban effect on the characteristics of cloud-to-ground lightning over Belo Horizonte-Brazil,” Annales Geophysicae, vol. 22, pp. 697 700, 2004.

K. P. Naccarato, O. Pinto, and I. Pinto, “Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil,” Geophysical Research Letters, vol. 30, no. 13, 2003.

S. M. Steiger and R. E. Orville, “Cloud-to-ground Lightning Enhancement over Southern Louisiana,” Geophysical Research Letters, vol. 30, no. 19, 2003.

L. Rivas and F. de Pablo, “Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity,” Atmospheric Environment, vol. 36, no. 17, pp. 2809 2816, 2002.

S. M. Steiger, R. E. Orville, and G. Huffines, “Cloud-to- Ground Lightning Characteristics over Houston, Texas: 1989 2000,” Journal of Geophysical Research, vol. 107, no. D11, 2002.

R. E. Orville et al., “Enhancement of cloud to ground lightning over Houston, Texas,” Geophysical Research Letters, vol. 28, no. 13, pp. 2597-2600, 2001.

D. Rosenfeld, “Suppression of rain and snow by urban and industrial air pollution,” Science, vol. 287, no. 5459, pp. 1793-1796, 2000.

D. Rosenfeld et al., “Flood or drought: How do aerosols affect precipitation?,” Science, vol. 321, no. 5894, pp. 1309 1313, 2008.

D. Rosenfeld and I. M. Lensky, “Satellite–based insights into precipitation formation processes in continental and maritime convective clouds,” Bull. Amer. Meteor. Soc., vol. 79, no. 11, pp. 2457-2476, 1998.

E. Williams, “Contrasting convective regimes over the amazon: Implications for cloud electrification,” J. Geophys. Res., vol. 107, no. D20, pp. 1-19, 2002.

Alcaldía Mayor de Bogotá D. C., “Informe anual de calidad del aire de Bogotá,” Secretaría Distrital Ambiente, Bogotá, Colombia, Tech. Rep., 2012.

J. Pachón and H. Sarmiento, “Análisis espacio- temporal de la concentración de metales pesados en la localidad de Puente Aranda de Bogotá-Colombia,” Rev. Fac. Ing. Univ. Antioquia, no. 43, pp. 120-133, 2008.

D. Palacio, C Zafra, and J. Rodríguez, “Evaluación de la calidad del aire mediante un laboratorio móvil: Puente Aranda (Bogotá D.C., Colombia),” Rev. Fac. Ing. Univ. Antioquia, no. 71, pp. 153-166, 2014.

J. Pabón, S. Pulido, O. Jaramillo, and J. Chaparro, “Análisis preliminar de la isla de calor en la Sabana de Bogotá,” Cuadernos de Geografía - Revista Colombiana de Geografía, vol. 7, no. 1-2, pp. 87-93, 1998.

R. I. Albrecht, S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, “Where are the lightning hotspots on Earth?,” Bull. American Meteorological Society, vol. 97, pp. 2051-2068, 2016.

C. Younes et al., “Lightning Parameters Evaluation in the Colombian Highest Atmospheric Activity Zone,” in 27th International Conference on Lightning Protection (ICLP), Avignon, France, 2004.

C. Younes, “Colombian LLS performance and its correlation with the lightning imaging sensor-LIS,” in Simposio Internacional sobre la Calidad de la Energía Eléctrica (SICEL), Bogotá, Colombia. 2003.

D. Perez, J. Herrera, and E. Perez, “Experimental detection efficiency evaluation for a lightning location system on a mountainous region,” in International Symposium on Lightning Protection (XII SIPDA), Belo Horizonte, Brazil, 2013.

D. Pérez, “Eficiencia de los sistemas de localización del rayo en zonas montañosas,” M.S. thesis, National University of Colombia, Manizales, Colombia, 2014.

C. Younes, “Evaluación de parámetros del rayo con mediciones terrestres y satelitales para Colombia,” M.S. thesis, National University of Colombia, Bogotá, Colombia, 2002.

C. Younes and H. Torres, Caracterización de los parámetros del rayo en Colombia, 1st ed. Manizales, Colombia: Universidad Nacional de Colombia, 2010.

S. K. Kar, Y. A. Liou, and K. J. Ha, “Characteristics of cloud-to-ground lightning activity over Seoul, South Korea in relation to an urban effect,” Annales Geophysicae, vol. 25, no. 10, pp. 2113-2118, 2007.




How to Cite

Del Río-Trujillo, D. F., Younes-Velosa, C., & Pulgarín-Rivera, J. D. (2017). Lightning activity over large cities located in mountainous tropical zone and its relationship with particulate matter PM10 distribution. Bogotá city case. Revista Facultad De Ingeniería Universidad De Antioquia, (82), 22–30.