Análisis por EIS, Mott Schottky y EFM de la estabilidad electroquímica y propiedades dieléctricas de recubrimientos Ca-P-Ag y Ca-P-Si-Ag obtenidos por oxidación por plasma electrolítico en Ti6Al4V

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.n83a02

Palabras clave:

oxidación por plasma electrolítico, análisis electroquímico, Ti6Al4V, recubrimiento, EFM

Resumen

El Ti6Al4V ELI (ASTM F136) es una de las aleaciones más empleadas en dispositivos de osteosíntesis y reemplazo articular. Sin embargo, las propiedades de esta aleación pueden ser mejoradas respecto a su biocompatibilidad y osteointegración con el tejido óseo a través de recubrimientos. El objetivo de este trabajo fue evaluar el comportamiento electroquímico de un recubrimiento obtenido por oxidación por plasma electrolítico sobre Ti6Al4V ELI empleando soluciones electrolíticas enriquecidas con iones de PO42-, Ca+2, Si+4 y varias concentraciones de Ag+1. Los recubrimientos se caracterizaron mediante espectroscopia de impedancia electroquímica (EIS) y Mott-Schottky (M-S) en una celda de tres electrodos con una solución fisiológica simulada. El comportamiento electroquímico se contrastó con microscopía de fuerza electrostática (EFM), donde se analizó el potencial eléctrico del recubrimiento. Los resultados de EIS mostraron mejores propiedades de estabilidad frente a la corrosión en los sustratos recubiertos con Ca- P-Ag, comparados con los recubiertos con Ca-P-Si-Ag. Los espectros de Nyquist y Bode mostraron relajaciones relacionadas con la transferencia de carga hacia la doble capa electroquímica como reflejo de los cambios microestructurales y de conductividad de los recubrimientos, dada por la presencia particular en cada caso, de los elementos contenidos en estos. De acuerdo con los resultados de M-S, todas las muestras ensayadas presentaron un comportamiento con dopado tipo n, cuya conductividad incrementó con la inclusión de plata. Mediante EFM se observaron mayores contrastes en el potencial, fase y la amplitud de los recubrimientos con mayor cantidad de plata respecto al Ti6Al4V sin recubrir.

|Resumen
= 371 veces | PDF (ENGLISH)
= 197 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sara María Leal-Marin, Universidad Nacional de Colombia

Investigadora Independiente. Grupo de Tribología y Superficies, Facultad de Minas, Departamento de Materiales y Minerales.

Hugo Armando Estupiñán-Duran, Universidad Nacional de Colombia

Profesor Asociado. Grupo de Tribología y Superficies, Facultad de Minas, Departamento de Materiales y Minerales.

Citas

T. J. Levingstone, M. Ardhaoui, K. Benyounis, L. Looney, and J. T. Stokes, “Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis,” Surf. Coatings Technol., vol. 283, pp. 29–36, 2015.

R. Drevet et al., “Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates,” Surf. Coatings Technol., vol. 301, pp. 94–99, 2016.

L. Hongxi, X. Qian, Z. Xiaowei, W. Chuanqi, and T. Baoyin, “Wear and corrosion behaviors of Ti6Al4V alloy biomedical materials by silver plasma immersion ion implantation process,” Thin Solid Films, vol. 521, pp. 89–93, 2012.

R. Asri, W. Harun, M. A. Hassan, S. Ghani, and Z. Buyong, “A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals,” J. Mech. Behav. Biomed. Mater., vol. 57, pp. 95–108, 2016.

X. Lu et al., “Plasma electrolytic oxidation coatings with particle additions – A review,” Surf. Coatings Technol., vol. 307, pp. 1165–1182, 2016.

E. Matykina et al., “Characterization of Spark-Anodized Titanium for Biomedical Applications,” J. Electrochem. Soc., vol. 154, no. 6, pp. 279-285, 2007.

D. Krupa et al., “Effect of plasma electrolytic oxidation in the solutions containing Ca, P, Si, Na on the properties of titanium,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 100B, no. 8, pp. 2156–2166, 2012.

H. Ishizawa and M. Ogino, “Formation and characterization of anodic titanium oxide films containing Ca and P.,” J. Biomed. Mater. Res., vol. 29, no. 1, pp. 65–72, 1995.

L. H. Li et al., “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials, vol. 25, no. 14, pp. 2867–2875, 2004.

M. Khorasanian, A. Dehghan, M. H. Shariat, M. E. Bahrololoom, and S. Javadpour, “Microstructure and wear resistance of oxide coatings on Ti–6Al–4V produced by plasma electrolytic oxidation in an inexpensive electrolyte,” Surf. Coatings Technol., vol. 206, no. 6, pp. 1495–1502, 2011.

D. Campoccia, L. Montanaro, and C. R. Arciola, “A review of the biomaterials technologies for infection-resistant surfaces,” Biomaterials, vol. 34, no. 34, pp. 8533–8554, 2013.

M. R. Garsivaz, M. A. Golozar, K. Raeissi, and M. Fazel, “Evaluation of corrosion and tribocorrosion of plasma electrolytic oxidation treated Ti–6Al–4V alloy,” Surf. Coatings Technol., vol. 244, pp. 29–36, 2014.

T. Mélin, M. Zdrojek, and D. Brunel, “Electrostatic Force Microscopy and Kelvin Force Microscopy as a Probe of the Electrostatic and Electronic Properties of Carbon Nanotubes,” in Scanning probe microscopy in nanoscience and nanotechnology, 1st ed., B. Bhushan (ed). Columbus, USA: Springer, 2010, pp. 89–128.

A. Krząkała, A. Kazek, and W. Simka, “Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys,” RSC Adv., vol. 3, no. 43, pp. 19725- 19743, 2013.

E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications, 2nded. New Jersey, USA: John Wiley & Sons, Inc., 2005.

T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006.

S. Marcelin, B. Ter, and B. Normand, “Electronic properties of passive films from the multi-frequency Mott–Schottky and power-law coupled approach,” Electrochemistry Communications, vol. 66, pp. 62–65, 2016.

K. Gelderman, L. Lee, and S. W. Donne, “Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation,” J. Chem. Educ., vol. 84, no. 4, pp. 685-688, 2007.

A. S. Bondarenko and G. A. Ragoisha, “Variable Mott-Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy,” J. Solid State Electrochem., vol. 9, no. 12, pp. 845–849, 2005.

R. Kumari, C. Blawert, and J. D. Majumdar, “Microstructures and Properties of Plasma Electrolytic Oxidized Ti Alloy (Ti-6Al-4V) for Bio-implant Application,” Metall. Mater. Trans. A, vol. 47, no. 2, pp. 788–800, 2016.

E. Matykina et al., “In vitro corrosion performance of PEO coated Ti and Ti6Al4V used for dental and orthopaedic implants,” Surf. Coatings Technol., vol. 307, pp. 1255–1264, 2016.

S. Durdu and M. Usta, “The tribological properties of bioceramic coatings produced on Ti6Al4V alloy by plasma electrolytic oxidation,” Ceram. Int., vol. 40, no. 2, pp. 3627–3635, 2014.

A. L. Yerokhin, X. Nie, A. Leyland, and A. Matthews, “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy,” Surf. Coatings Technol., vol. 130, no. 2, pp. 195–206, 2000.

A. Mathis, E. Rocca, D. Veys, and J. Tardelli, “Electrochemical behaviour of titanium in KOH at high potential,” Electrochim. Acta, vol. 202, pp. 253–261, 2016.

S. Durdu, M. Usta, and A. S. Berkem, “Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation,” Surf. Coatings Technol., vol. 301, pp. 85–93, 2016.

S. Aliasghari, “Plasma electrolytic oxidation of titanium,” Ph.D. dissertation, The University of Manchester, Manchester, UK, 2014.

M. Fazel, H. R. Salimijazi, M. A. Golozar, and M. R. Garsivaz, “A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process,” Appl. Surf. Sci., vol. 324, pp. 751–756, 2015.

V. S. de Viteri et al., “Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO2 coatings developed by plasma electrolytic oxidation,” Appl. Surf. Sci., vol. 367, pp. 1–10, 2016.

S. Suresh, K. Pavankumar, N. Rameshbabu, and K. Venkateswarlu, “Effect of Plasma Electrolytic Surface Treatment on the Corrosion Characteristics of the Ti-6Al-4V in Acidic, Industrial and Marine Environments,” Mater. Sci. Forum, vol. 710, pp. 677–682, 2012.

D. Quintero et al., “Control of the physical properties of anodic coatings obtained by plasma electrolytic oxidation on Ti6Al4V alloy,” Surf. Coatings Technol., vol. 283, pp. 210–222, 2015.

M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, “Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II,” Appl. Surf. Sci., vol. 258, no. 7, pp. 2416–2423, 2012.

Y. Miyahara, J. Topple, Z. Schumacher, and P. Grutter, “Kelvin probe force microscopy by direct dissipative electrostatic force modulation,” Phys. Rev. Appl., vol. 4, 2015.

G. Gramse, M. A. Edwards, L. Fumagalli, and G. Gomila, “Theory of amplitude modulated electrostatic force microscopy for dielectric measurements in liquids at MHz frequencies,” Nanotechnology, vol. 24, no. 41, 2013.

N. S. Malvankar, S. E. Yalcin, M. T. Tuominen, and D. R. Lovley, “Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. - PubMed - NCBI,” Nat. Nanotechnol., vol. 9, no. 12, pp. 1012–1017, 2014.

Descargas

Publicado

2017-06-26

Cómo citar

Leal-Marin, S. M., & Estupiñán-Duran, H. A. (2017). Análisis por EIS, Mott Schottky y EFM de la estabilidad electroquímica y propiedades dieléctricas de recubrimientos Ca-P-Ag y Ca-P-Si-Ag obtenidos por oxidación por plasma electrolítico en Ti6Al4V. Revista Facultad De Ingeniería Universidad De Antioquia, (83), 9–19. https://doi.org/10.17533/udea.redin.n83a02