Polycaprolactone- chitosan- Ag coatings on Ti6Al4V: critical synergic aspects analyzed by Raman, EFM and contact angle





Biocompatible coating, Wettability, Electric potential, Polymers, Bone implant


The Ti6Al4V presented a natural oxide layer that increased the corrosion resistance of the material but decreased the physicochemical compatibility with the bone tissue. The use of polymeric coatings on Ti6Al4V allows the creation of an interface that promotes osseointegration and antibacterial activity. The objective of this work was to analyze a coating on Ti6Al4V obtained by dip-coating with a mixture of chitosan, polycaprolactone, and silver. The synergy between chitosan and silver allows the polymeric matrix to be retained and to enhance the coating’s mechanical-structural functions, integrating bone cells and serving as antibacterial agents. Coating morphology was assessed by scanning electron microscopy (SEM) and the distribution of chemical elements was determined by energy dispersive spectroscopy (EDS). Confocal Raman spectroscopy was used to evaluate the composition and structure of the coating. Electrical potential distribution, phase distribution and surface topography of surfaces were analyzed using an electrostatic force microscopy. Contact angle measurements were also performed to determine coating wettability.

= 214 veces | PDF
= 255 veces|


Download data is not yet available.

Author Biographies

Sara María Leal-Marín, National University of Colombia

Student of Materials and Process Engineering, Faculty of Mines, Department of Materials and Minerals. Group of Tribology and Surfaces.

Hugo Armando Estupiñán-Duran, National University of Colombia

Professor. Faculty of Mines, Department of Materials and Minerals.


Y. Yan, E. Chibowski, and A. Szcześ, “Surface properties of ti-6al-4v alloy part i: Surface roughness and apparent surface free energy,” Mater. Sci. Eng. C., vol. 70, no. 1, pp. 207–215, Jan. 2017.

Matykina and et al., “Characterization of spark-anodized titanium for biomedical applications,” Journal of The Electrochemical Society, vol. 154, no. 6, pp. C279–C285, 2007.

F. C. García, D. Y. Peña, and H. A. Estupiñán, “Comportamiento morfológico y electroquímico de un recubrimiento dip coating policaprolactona-quitosano-colágeno sobre ti6al4v,” vol. 38, pp. 54– 75, Apr. 2017.

A. R. Sarasam, “Chitosan-polycaprolactone mixtures as biomaterials -influence of surface morphology on cellular activity,” Ph.D. dissertation, Faculty of the Graduate College, Oklahoma State University, Oklahoma, EE. UU, 2006.

S. W. Pok, K. N. Wallace, and S. V. Madihally, “In vitro characterization of polycaprolactone matrices generated in aqueous media,” Acta Biomater., vol. 6, no. 3, pp. 1061–1068, Mar. 2010.

D. Campoccia, L. Montanaro, and C. R. Arciola, “A review of the biomaterials technologies for infection-resistant surfaces.” Biomaterials, vol. 34, no. 34, pp. 8533–8554, 2013.

G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran, and B. D. Boyan, “High surface energy enhances cell response to titanium substrate microstructure.” Journal of biomedical materials research. Part A, vol. 74, no. 1, pp. 49–58, 2005.

L. Ponsonnet, K. Reybier, N. Jaffrezic-Renault, V. Comte, C. Lagneau, M. Lissac, and C. Martelet, “Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour,” vol. 23, pp. 551–560, Jun. 2003.

L. Gómez, A. Quintero, D. Peña, and H. Estupiñan, “Obtención, caracterización y evaluación in vitro de recubrimientos de policaprolactona-quitosano sobre la aleación ti6al4v tratada químicamente,” Revista de Metalurgia, vol. 50, no. 3, 2014.

K. Wang, C. Zhou, Y. Hong, and X. Zhang, “A review of protein adsorption on bioceramics,” vol. 2, pp. 259–77, Jun. 2012.

M. P. Fiorucci, A. J. López, and A. Ramil, “Surface modification of ti6al4v by nanosecond laser ablation for biomedical applications,” Journal of Physics: Conference Series, vol. 605, no. 1, p. 012022, 2015.

F. Meng, Y. Liu, J. Chu, W. Wang, and T. Qi, “Structural control of Na2Tio3 in pre-treating natural rutile ore by alkali roasting for Tio2 production,” Can. J. Chem. Eng., vol. 92, no. 8, pp. 1346–1352, Aug. 2014.

L. G. R. y Andrés Quintero Jaime y Darío Peña Ballesteros y Hugo Estupiñan Durán, “Obtención, caracterización y evaluación in vitro de recubrimientos de policaprolactona-quitosano sobre la aleación ti6al4v tratada químicamente,” Revista de Metalurgia, vol. 50, no. 3, 2014.

A. Yerokhin, X. Nie, A. Leyland, and A. Matthews, “Characterisation of oxide films produced by plasma electrolytic oxidation of a ti–6al–4v alloy,” vol. 130, pp. 195–206, Aug. 2000.

R. Briceño, S. Camero, G. Gonzáles, and A. Rosales, “Estudio de la susceptibilidad a la corrosión en presencia de fluidos corporales simulados de una aleación ti6al4v recubierta con hidroxiapatita,” Acta Microsc., vol. 21, no. 3, pp. 160–176, 2012.

C. E. Bamberger and G. M. Begun, “Sodium titanates: Stoichiometry and raman spectra,” vol. 70, pp. C–48–C–51, Apr. 2005.

J.-J. Arnoux, G. Sutter, G. List, P. Bourson, and H. Chaynes, “Raman characterization of ti–6al–4v oxides and thermal history after kinetic friction,” vol. 87, Feb. 2014.

M. Gaintantzopoulou, S. Zinelis, N. Silikas, and G. Eliades, “Micro-raman spectroscopic analysis of tio2 phases on the root surfaces of commercial dental implants,” Dent. Mater., vol. 30, no. 8, pp. 861–867, Aug. 2014.

I. Martina, R. Wiesinger, D. Jembrih, and M. Schreiner, “Micro-raman characterization of silver corrosion products: Instrumental set-up and reference database,” vol. 9, pp. 1–6, Jan. 2012.

P. Girard, “Electrostatic force microscopy: principles and some applications to semiconductors,” Nanotechnology, vol. 12, no. Apr., p. 485.

H. A. Estupiñan, C. Vázquez, D. Y. Peña, and L. F. Ardila, “Degradación de ácido poliláctico/hidroxiapatita y ácido poliglicólico en fluido corporal simulado,” Rev. UIS Ing., vol. 10, no. 2, pp. 145–150, Dec. 2011.

G. Strnad, N. Chirila, C. Petrovan, and O. Russu, “Contact angle measurement on medical implant titanium based biomaterials,” Procedia Technol., vol. 22, pp. 946–953, 2016.

R. Gittens and et al, “A review on the wettability of dental implant surfaces ii: Biological and clinical aspects,” pp. 2907–2918, Apr. 2014.

N. J. Hallab, K. J. Bundy, K. O’Connor, R. L. Moses, and J. J. Jacobs, “Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion,” Tissue Eng., vol. 7, no. 1, pp. 55–71, Feb. 2001.

D. Y. Kwok and A. W. Neumann, “Contact angle measurement and contact angle interpretation,” Adv. Colloid Interface Sci, vol. 81, no. 3, pp. 167–249, Sep. 1999.




How to Cite

Leal-Marín, S. M., & Estupiñán-Duran, H. A. (2018). Polycaprolactone- chitosan- Ag coatings on Ti6Al4V: critical synergic aspects analyzed by Raman, EFM and contact angle. Revista Facultad De Ingeniería Universidad De Antioquia, (89), 59–67. https://doi.org/10.17533/udea.redin.n89a08