Polycaprolactone- chitosan- Ag coatings on Ti6Al4V: critical synergic aspects analyzed by Raman, EFM and contact angle
DOI:
https://doi.org/10.17533/udea.redin.n89a08Keywords:
biocompatible coating, wettability, electric potential, polymers, bone implantAbstract
The Ti6Al4V presented a natural oxide layer that increased the corrosion resistance of the material but decreased the physicochemical compatibility with the bone tissue. The use of polymeric coatings on Ti6Al4V allows the creation of an interface that promotes osseointegration and antibacterial activity. The objective of this work was to analyze a coating on Ti6Al4V obtained by dip-coating with a mixture of chitosan, polycaprolactone, and silver. The synergy between chitosan and silver allows the polymeric matrix to be retained and to enhance the coating’s mechanical-structural functions, integrating bone cells and serving as antibacterial agents. Coating morphology was assessed by scanning electron microscopy (SEM) and the distribution of chemical elements was determined by energy dispersive spectroscopy (EDS). Confocal Raman spectroscopy was used to evaluate the composition and structure of the coating. Electrical potential distribution, phase distribution and surface topography of surfaces were analyzed using an electrostatic force microscopy. Contact angle measurements were also performed to determine coating wettability.
Downloads
References
Y. Yan, E. Chibowski, and A. Szcześ, “Surface properties of ti-6al-4v alloy part i: Surface roughness and apparent surface free energy,” Mater. Sci. Eng. C., vol. 70, no. 1, pp. 207–215, Jan. 2017.
Matykina and et al., “Characterization of spark-anodized titanium for biomedical applications,” Journal of The Electrochemical Society, vol. 154, no. 6, pp. C279–C285, 2007.
F. C. García, D. Y. Peña, and H. A. Estupiñán, “Comportamiento morfológico y electroquímico de un recubrimiento dip coating policaprolactona-quitosano-colágeno sobre ti6al4v,” vol. 38, pp. 54– 75, Apr. 2017.
A. R. Sarasam, “Chitosan-polycaprolactone mixtures as biomaterials -influence of surface morphology on cellular activity,” Ph.D. dissertation, Faculty of the Graduate College, Oklahoma State University, Oklahoma, EE. UU, 2006.
S. W. Pok, K. N. Wallace, and S. V. Madihally, “In vitro characterization of polycaprolactone matrices generated in aqueous media,” Acta Biomater., vol. 6, no. 3, pp. 1061–1068, Mar. 2010.
D. Campoccia, L. Montanaro, and C. R. Arciola, “A review of the biomaterials technologies for infection-resistant surfaces.” Biomaterials, vol. 34, no. 34, pp. 8533–8554, 2013.
G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran, and B. D. Boyan, “High surface energy enhances cell response to titanium substrate microstructure.” Journal of biomedical materials research. Part A, vol. 74, no. 1, pp. 49–58, 2005.
L. Ponsonnet, K. Reybier, N. Jaffrezic-Renault, V. Comte, C. Lagneau, M. Lissac, and C. Martelet, “Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour,” vol. 23, pp. 551–560, Jun. 2003.
L. Gómez, A. Quintero, D. Peña, and H. Estupiñan, “Obtención, caracterización y evaluación in vitro de recubrimientos de policaprolactona-quitosano sobre la aleación ti6al4v tratada químicamente,” Revista de Metalurgia, vol. 50, no. 3, 2014.
K. Wang, C. Zhou, Y. Hong, and X. Zhang, “A review of protein adsorption on bioceramics,” vol. 2, pp. 259–77, Jun. 2012.
M. P. Fiorucci, A. J. López, and A. Ramil, “Surface modification of ti6al4v by nanosecond laser ablation for biomedical applications,” Journal of Physics: Conference Series, vol. 605, no. 1, p. 012022, 2015.
F. Meng, Y. Liu, J. Chu, W. Wang, and T. Qi, “Structural control of Na2Tio3 in pre-treating natural rutile ore by alkali roasting for Tio2 production,” Can. J. Chem. Eng., vol. 92, no. 8, pp. 1346–1352, Aug. 2014.
L. G. R. y Andrés Quintero Jaime y Darío Peña Ballesteros y Hugo Estupiñan Durán, “Obtención, caracterización y evaluación in vitro de recubrimientos de policaprolactona-quitosano sobre la aleación ti6al4v tratada químicamente,” Revista de Metalurgia, vol. 50, no. 3, 2014.
A. Yerokhin, X. Nie, A. Leyland, and A. Matthews, “Characterisation of oxide films produced by plasma electrolytic oxidation of a ti–6al–4v alloy,” vol. 130, pp. 195–206, Aug. 2000.
R. Briceño, S. Camero, G. Gonzáles, and A. Rosales, “Estudio de la susceptibilidad a la corrosión en presencia de fluidos corporales simulados de una aleación ti6al4v recubierta con hidroxiapatita,” Acta Microsc., vol. 21, no. 3, pp. 160–176, 2012.
C. E. Bamberger and G. M. Begun, “Sodium titanates: Stoichiometry and raman spectra,” vol. 70, pp. C–48–C–51, Apr. 2005.
J.-J. Arnoux, G. Sutter, G. List, P. Bourson, and H. Chaynes, “Raman characterization of ti–6al–4v oxides and thermal history after kinetic friction,” vol. 87, Feb. 2014.
M. Gaintantzopoulou, S. Zinelis, N. Silikas, and G. Eliades, “Micro-raman spectroscopic analysis of tio2 phases on the root surfaces of commercial dental implants,” Dent. Mater., vol. 30, no. 8, pp. 861–867, Aug. 2014.
I. Martina, R. Wiesinger, D. Jembrih, and M. Schreiner, “Micro-raman characterization of silver corrosion products: Instrumental set-up and reference database,” vol. 9, pp. 1–6, Jan. 2012.
P. Girard, “Electrostatic force microscopy: principles and some applications to semiconductors,” Nanotechnology, vol. 12, no. Apr., p. 485.
H. A. Estupiñan, C. Vázquez, D. Y. Peña, and L. F. Ardila, “Degradación de ácido poliláctico/hidroxiapatita y ácido poliglicólico en fluido corporal simulado,” Rev. UIS Ing., vol. 10, no. 2, pp. 145–150, Dec. 2011.
G. Strnad, N. Chirila, C. Petrovan, and O. Russu, “Contact angle measurement on medical implant titanium based biomaterials,” Procedia Technol., vol. 22, pp. 946–953, 2016.
R. Gittens and et al, “A review on the wettability of dental implant surfaces ii: Biological and clinical aspects,” pp. 2907–2918, Apr. 2014.
N. J. Hallab, K. J. Bundy, K. O’Connor, R. L. Moses, and J. J. Jacobs, “Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion,” Tissue Eng., vol. 7, no. 1, pp. 55–71, Feb. 2001.
D. Y. Kwok and A. W. Neumann, “Contact angle measurement and contact angle interpretation,” Adv. Colloid Interface Sci, vol. 81, no. 3, pp. 167–249, Sep. 1999.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.