Análisis de los modelos para describir el equilibrio de adsorción en sistemas cromatográficos

Autores/as

  • Jorge García-Galdo Universidad de Antioquia
  • Ulises Jáuregui-Haza Centro de Química Farmacéutica, La Habana, Cuba.

DOI:

https://doi.org/10.17533/udea.redin.326313

Palabras clave:

Adsorción, cromatografía preparativa, isotermas de adsorción, modelo de la disolución adsorbida, escalado, modelo de retención.

Resumen

La cromatografía preparativa es ampliamente utilizada en las industrias química y farmacéutica para separar o purificar mezclas de compuestos. Para modelar los procesos cromatográficos es imprescindible determinar las isotermas de adsorción. El principal propósito de este ar1ículo es analizar los modelos de isotermas de adsorción más usados, en par1icular, aquéllos que han sido emplea­dos para correlacionar datos experimentales medidos en cromatografía líquida.
|Resumen
= 295 veces | PDF
= 819 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Guiochon, G. et al. A.M. Fundamentals of Nonlinear and Preparative Chromatography. Academic Press. Boston, 1994.

Ruthven, D. M. Principies of Adsorption and Adsorption Processes. Wiley-t:.terscience. New York. NY. 1984.

Jaroniec M. Madey R. Physical Adsorption on Heterogeneous Solids. Elsevier Arnsterdam. 1998.

Valenzuela, D. P. and Myers, A. L. Adsorption Equilibrium Data Handbook. Prentice Hall. Englewood Cliffs. N. J. 1989.

Langmuir, J. "The Constitution and Fundamental Properties of Solids and Liquids". J. Am. Chemical. Soc., 38, 2.221, 19 l6.

Quiñones, l. and Guiochon, G. "Extension of a Jovanovic-Freundlich isotherm model to multicomponent a.dsorption on heterogeneous surfaces". J. Chrom????ogr. A. 796, 15, 1998. DOI: https://doi.org/10.1016/S0021-9673(97)01096-0

Schwab, G. M. Ergebnisse der exacten Naturwissens­chaften, Vol. 7. Springer, Berlin, 1928. p. 276. DOI: https://doi.org/10.1007/978-3-642-94256-3_8

Le Van, M.D. and Venneulen, T. "Binary Langmuir and Freundlich Isotherms for Ideal Adsorbed Solutions". J. Phys. Chemical. 85, 324 7, 198 l.

Jovanovic, D.S. Physical adsorption of gases. Kolloid z., 235, 1203, 1969. DOI: https://doi.org/10.1007/BF01542530

Popa, V. and Segal, E. Adsorption of gaseous mixtures within the framework of Jovanovic model. Rev. Roum. Chim. 21,977, 1976.

Vlad, M. and Segal, E. A kinetic analysis of Langmuir model for adosrption witún the frame work of Jovanovic theory: A generalization of the Jovanovic isotherm. Surface Sci., 79,608, 1979. DOI: https://doi.org/10.1016/0039-6028(79)90308-X

Quiñones, l.and Guiochon, G. "Application of different isotherm models to the description of single-component and competitive adsorption data". J. Chromatogr. A, 734, 83, 1996. DOI: https://doi.org/10.1016/0021-9673(95)01162-5

Jandera, P. et al. "Fitting competitive adorption isothenns to the distribution data in normal phase systems with binary mobile phases". J. Chromatogr. A, 831, 131, 1999. DOI: https://doi.org/10.1016/S0021-9673(98)00874-7

Fowler, R. H. and Guggenheim, E. A. Statistical Thermodynamics. Cambridge University Press: Cambridge, U. K. 1960.

Zhu, J. et al. "Comparison of various isotherm model for predicting competitive adsorption data". J. Chromatogr. A., 552, 71, 1991. DOI: https://doi.org/10.1016/S0021-9673(01)95924-2

Moreau, M. et al. Adsorption isotherm model for multicomponent adsorbate-adsorbate interactions. J. Colloid Interface Sci. 141, 127, 1991. DOI: https://doi.org/10.1016/0021-9797(91)90308-U

Quiñones, l. and Guiochon, G. lsothenn Models for Localized Monolayers wth Lateral lnteractions. Application to Single-Component and Competitive Adsorption Data. Langmuir, 12, 5.433, 1996. DOI: https://doi.org/10.1021/la9603333

Berezin, G. I.and Kiselev, A. V. Adsorbate-adsorbate association on a homogeneous surface of a nonspecific adsorben!. J. Colloid Interface Sci. 38,227, 1972. DOI: https://doi.org/10.1016/0021-9797(72)90238-X

Brunauer, S. et al. Adsorption of gases in multimol. Layers. J. Am. Chem. Soc., 60,309, 1938. DOI: https://doi.org/10.1021/ja01269a023

Freundlich, H. Adsorption in Solution. Phys. Chemie, 57,384, 1906. DOI: https://doi.org/10.1515/zpch-1907-5723

Quiñones, l. and Guiochon, G. Derivation and Application of a Jovanovic-Freundlich [sothenn Model for Single-Component Adsorption on Heterogeneous Surfaces. J. Colloid Interface Sci., 183, 57, 1996. DOI: https://doi.org/10.1006/jcis.1996.0518

Radke, C.J. and Prausnitz, J. "Thennodynamics ofMulti­solute Adsorption from Dilute Liquid Solutions" En: AJCHE Joumal, 18, 761, 1972. DOI: https://doi.org/10.1002/aic.690180417

Hines, A. L. et al. A New lsothenn for Adsorption on Heterogeneous Adsorbents. Sep. Sci. Technol. 25, 869,1990. DOI: https://doi.org/10.1080/01496399008050371

Honig, J. M. and Reyerson, L. H. "Adsorption of Nitrogen, Oxigen, and Argon on Rutile at Low Temperatures; Applicability of the concept of Surface Heterogeneity". J. Phys. Chemical. 56, 140, 1952. DOI: https://doi.org/10.1021/j150493a027

Charton, F. et al. "Modeling ofthe adsorption behavior and the chromatographic band pro files of enantiomers. Behavior of methyl mandelate on immobilized cellulose". J. Chromatogr. A., 630, 21, 1993. DOI: https://doi.org/10.1016/0021-9673(93)80439-F

Myers, A., Prausnitz, J. "Thermodynamics of mixed gas adsorption". AJCHE. J. 11,121, 1965. DOI: https://doi.org/10.1002/aic.690110125

Rudisill, E.N., LeVan D. "Standard States For The Adsorbed-Solution Theory" en: Chemical Engineering Science, 47, 5, 1992. DOI: https://doi.org/10.1016/0009-2509(92)80245-8

Frey, D. D., Rodrigues, A. E. Explicit Calculation of Multicomponent Equilibria for ideal Adsorbed Solutions. AiChE J., 40, 1, 1994. DOI: https://doi.org/10.1002/aic.690400121

Talu, O., Zwiebel, l. "Multicomponent Adsorption Equilibria of Nonideal Mixtures". AICHE J. 32, 1.263, 1986. DOI: https://doi.org/10.1002/aic.690320805

Valenzuela, D. P. et al. "Adsorption of gas mixtures: effect of energetic heterogeneity". AICHE, J. 34, 397, 1988. DOI: https://doi.org/10.1002/aic.690340306

Quiñones, l. et al. "Multisolute adsorption equilibria in a reversed-phase liquid chromatography system" Chemical Engineering Science 55, 909, 2000. DOI: https://doi.org/10.1016/S0009-2509(99)00393-0

Dasko, L. "Application of the UNIFAC metbod for assessment of retention in reversed-phase liquid chromatography". J. Chromatogr. A., 543,267, 1991. DOI: https://doi.org/10.1016/S0021-9673(01)95779-6

Park, J. H. et al. "UNIFAC model as a heuristic guide for estimating retention in reversed-phase liquid chromatography". J. Chromatogr. A., 656, 69, 1993. DOI: https://doi.org/10.1016/0021-9673(93)80798-D

Hansen, H.K. et al. Vapor-Liquid equilibr ia by UNTFAC group contribution. 5. Revision and extension. Industrial and Engineering Chemistry Research, 30, 2.352, 1991. DOI: https://doi.org/10.1021/ie00058a017

Guan, H. et al. "Modeling the influence ofthe experi­mental conditions on the separation ofthe components of a binary mixture in isocratic overloaded elution preparative chromatography" J. Chromatogr. A. 734, 49, 1996. DOI: https://doi.org/10.1016/0021-9673(95)01003-3

Katti, A.M, Guiochon, G. "Quantitative comparison between the experimental band profiles of binary mixtures in overload elution chromatography and their profiles predicted by the semi-ideal model" J. Chromatogr. A. 499, 21, 2000. DOI: https://doi.org/10.1016/S0021-9673(00)96960-7

Golshan-Shirazi, S., Guiochon, G. "Theory of optimization of the experimental conditions of preparative elution chromatography: optimization ofthe column efficiency". Analytical Chemistry, 61, 1638, 1989. DOI: https://doi.org/10.1021/ac00188a014

Zenhausem, R., Rippin. D. "Modelling and simulation of multicomponent non linear chromatography". Computers Chem. Engng. 22. 259. 1998. DOI: https://doi.org/10.1016/S0098-1354(96)00364-X

Jacobson, S. et al. "lsotherm Selection for Band Profiles Simulations in Preparative Chromatography". AICHE JournaJ, 37,836, 1991. DOI: https://doi.org/10.1002/aic.690370606

Felinger, A., Guiochon, G. "Comparing the optimum performance oftbe different modes ofpreparative liquid chromatography". J. Chromatogr. A. 796, 59, 1998. DOI: https://doi.org/10.1016/S0021-9673(97)01075-3

Sajonz, P. et al. "Influence of the concentration dependence of the mass transfer properties on chromatographic band profiles. Accuracy of the determination of isotherm data by frontal analysis". J. Chromatogr. A. 731, 1, 1996. DOI: https://doi.org/10.1016/0021-9673(95)00988-4

Heuer, C. Et al. "Scale-up in preparative chroma­tography". J. Chromatogr. A. 752, 19, 1996. DOI: https://doi.org/10.1016/S0021-9673(96)00496-7

Cherrak, D. E. et al. "Adsorption behavior and prediction of the band profiles of tbe enantiomers of 3-chloro-1-phenyl- l -propanol. Influence of the mass transfer kinetics". J. Chromatogr. A. 877, 109, 2000. DOI: https://doi.org/10.1016/S0021-9673(00)00189-8

Jandera, P., Komers, D. "Fitting competitive adsorption isotberms to the experimental distribution data in reversed-phase systems". J. Chromatogr. A. 762, 3, 1997. DOI: https://doi.org/10.1016/S0021-9673(96)00853-9

Fomstedt, T. et al. "Experimental and Theoretical Study ofthe Adsorption Behavior and Mass Transfer Kinetics of Propranolol Enantiomers on Cellulase Protein as tbe Selector". Anal. Chemical. 68, 2.3 70, 1996. DOI: https://doi.org/10.1021/ac960088s

Quiñones, l. et al. "Adsorption equilibria and overload band profiles ofbasic drugs in reversed-phase system".

J. Chromatogr. A. 877, 1, 2000.

Kaczmaski, K., Antos, D. "Calculation of Chromatographic Band Profiles with an implicit isotherm". J. Chromatogr. A. 862. 1, 1999. DOI: https://doi.org/10.1016/S0021-9673(99)00901-2

Nicoud, R. M., Seidel-Morgenstem, A. "Adsorption lsotherms: Experimental Determination and Application to Preparative Chromatography". lsolation and Purification, 2, 165, 1996.

Descargas

Publicado

2001-11-29

Cómo citar

García-Galdo, J., & Jáuregui-Haza, U. (2001). Análisis de los modelos para describir el equilibrio de adsorción en sistemas cromatográficos. Revista Facultad De Ingeniería Universidad De Antioquia, (23), 55–70. https://doi.org/10.17533/udea.redin.326313