Deshidrogenación oxidativa de propano con materiales a base de cobalto, tungsteno y molibdeno

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.n84a11

Palabras clave:

deshidrogenación oxidativa, propano, cobalto, tungsteno, molibdeno

Resumen

La deshidrogenación oxidativa de propano es una alternativa interesante para la obtención de olefinas. En este trabajo se presentan los resultados obtenidos en la deshidrogenación oxidativa de propano utilizando dos materiales a partir de cobalto, tungsteno y molibdeno. Los materiales fueron caracterizados utilizando Difracción de Rayos X (XRD), espectroscopia infrarroja con transformada de Fourier (FTIR), análisis termogravimétrico (TGA) y análisis térmico diferencial (DTA). El material CoMoϕy al ser calcinado a 623 K se transforma en la fase β-CoMoO4 (CoMoϕy623), la misma fase es obtenida cuando el material se calcina a 873 K (CoMoϕy873). CoMoϕy623 muestra un buen desempeño en la deshidrogenación oxidativa de propano, se obtuvo un rendimiento a propeno de 3,4% a una temperatura de 623 K y una velocidad espacial de 100 mL g-1 min-1. El material CoWsϕy fue calcinado a 673 K, obteniéndose una fase wolframita de baja cristalinidad. Este material presenta una alta selectividad a propeno y un bajo rendimiento. CoMoϕy873 presenta una buena actividad y selectividad, comparable con otros materiales reportados en la literatura, y su potencial como catalizador en la deshidrogenación oxidativa de propano se hace más evidente con la prueba que muestra ser estable durante 24 h de operación continua a 773 K.

|Resumen
= 1673 veces | PDF (ENGLISH)
= 234 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Maurin Salamanca-Gúzman, Universidad de Antioquia

Grupo Catalizadores y Adsorbentes, Instituto de Química.

Yordy Enrique Licea-Fonseca, Instituto Nacional de Tecnología

CENANO-DCAP.

Adriana Echavarría-Isaza, Universidad de Antioquia

Grupo Catalizadores y Adsorbentes, Instituto de Química.

Arnaldo Faro, Universidad Federal de Rio de Janeiro

Departamento de Físico-Química, Instituto de Química.

Luz Amparo Palacio-Santos, Universidad del Estado de Río de Janeiro

Departamento de Operaciones y Procesos Industriales, Instituto de Química.

Citas

K. G. Mittal, “Cracking paraffinic hydrocarbons to make alpha olefins—a review,” J. Chem. Technol. Biotechnol., vol. 36, no. 7, pp. 291–299, 1986.

D. Sanfilippo and I. Miracca, “Dehydrogenation of paraffins: synergies between catalyst design and reactor engineering,” Catal. Today, vol. 111, no. 1–2, pp. 133–139, 2006.

K. Seshan, “Oxidative conversion of lower alkanes to olefins,” Catalysis, vol. 22, pp. 119–143, 2010.

F. Cavani, N. Ballarini, and A. Cericola, “Oxidative dehydrogenation of ethane and propane: How far from commercial implementation?,” Catal. Today, vol. 127, no. 1–4, pp. 113–131, 2007.

A. F. Wagner, I. R. Slagle, D. Sarzynski, and D. Gutman, “Experimental and theoretical studies of the ethyl + oxygen reaction kinetics,” J. Phys. Chem., vol. 94, no. 5, pp. 1853–1868, 1990.

C. A. Carrero, R. Schloegl, I. E. Wachs, and R. Schomaecker, “Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts,” ACS Catal., vol. 4, no. 10, pp. 3357–3380, 2014.

F. Cavani and F. Trifirò, “The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins,” Catal. Today, vol. 24, no. 3, pp. 307–313, 1995.

H. H. Kung and M. C. Kung, “Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides,” Appl. Catal. A: Gen., vol. 157, no. 1–2, pp. 105–116, 1997.

K. Alexopoulos, M. F. Reyniers, and G. B. Marin, “Reaction path analysis of propane selective oxidation over V2 O5 and V2 O5 /TiO2 ,” J. Catal., vol. 289, pp. 127–139, 2012.

A. Qiao et al., “Oxidative dehydrogenation of ethane to ethylene over V2 O5 /Nb2 O5 catalysts,” Catal. Commun., vol. 30, pp. 45–50, 2013.

P. Viparelli et al., “Oxidative dehydrogenation of propane over vanadium and niobium oxides supported catalysts,” Appl. Catal. A: Gen., vol. 184, no. 2, pp. 291– 301, 1999.

X. Fan et al., “Synthesis of a new ordered mesoporous NiMoO4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane,” J. Energy Chem., vol. 23, no. 2, pp. 171–178, 2014.

B. Pillay, M. R. Mathebula, and H. B. Friedrich, “The oxidative dehydrogenation of n-hexane over Ni–Mo–O catalysts,” Appl. Catal. A: Gen., vol. 361, no. 1–2, pp. 57–64, 2009.

F. Dury, M. A. Centeno, E. M. Gaigneaux, and P. Ruiz, “An attempt to explain the role of CO2 and N2 O as gas dopes in the feed in the oxidative dehydrogenation of propane,” Catal. Today, vol. 81, no. 2, pp. 95–105, 2003.

G. Che, R. Quintana, R. S. Ruiz, J. S. Valente, and C. O. Castillo, “Kinetic modeling of the oxidative dehydrogenation of ethane to ethylene over a MoVTeNbO catalytic system,” Chem. Eng. J., vol. 252, pp. 75–88, 2014.

P. Sazama et al., “Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2 O and N2 O decomposition,” J. Catal., vol. 299, pp. 188–203, 2013.

M. A. Botavina et al., “Oxidative dehydrogenation of C3–C4 paraffins in the presence of CO2 over CrOx /SiO2 catalysts,” Appl. Catal. A Gen., vol. 347, no. 2, pp. 126– 132, 2008.

M. A. Larrubia J. M. Blasco, L. J. Alemany, and C. Herrera, “Estudio de la catálisis de la deshidrogenación oxidativa del propano: empleo de sistemas catalíticos multimetálicos soportados,” Ing. Química, vol. 424, pp. 132–144, 2005.

B. Solsona et al., “Supported Ni–W–O Mixed Oxides as Selective Catalysts for the Oxidative Dehydrogenation of Ethane,” Top. Catal., vol. 52, no. 6–7, pp. 751–757, 2009.

M. Salamanca, Y. E. Licea, A. Echavarría, A. C. Faro, and L. A. Palacio, “Hydrothermal synthesis of new wolframite type trimetallic materials and their use in oxidative dehydrogenation of propane,” Phys. Chem. Chem. Phys., vol. 11, no. 41, pp. 9583–9591, 2009.

B. Farin, M. Devillers, and E. M. Gaigneaux. “Nanostructured hybrid materials as precursors of mesoporous NiMo-based catalysts for the propane oxidative dehydrogenation,” Microporous Mesoporous Mater., vol. 242, pp. 200-207, 2017.

H. Pezerat, “Problemes de non-stoechiométrie dans certains molybdates hydratés de zinc, cobalt et nickel,” Bull. Soc. Fr. Mineral. Cristallogr., vol. 90, pp. 549–552, 1967.

D. Levin, S. L. Soled, and J. Y. Ying, “Crystal Structure of an Ammonium Nickel Molybdate Prepared by Chemical Precipitation,” Inorg. Chem., vol. 35, no. 14, pp. 4191–4197, 1996.

G. W. Smith, “The crystal structures of cobalt molybdate CoMoO4 and nickel molybdate NiMoO4 ,” Acta Crytallographica, vol. 15, pp. 1054–1057, 1962.

J. Brito and A. L. Barbosa, “Effect of Phase Composition of the Oxidic Precursor on the HDS Activity of the Sulfided Molybdates of Fe(II), Co(II), and Ni(II),” J. Catal., vol. 171, no. 2, pp. 467–475, 1997.

M. Suvanto, J. Räty, and T. A. Pakkanen, “Catalytic activity of carbonyl precursor based W/Al2 O3 and CoW/ Al2 O3 catalysts in hydrodesulfurization of thiophene,” Appl. Catal. A: Gen., vol. 181, no. 1, pp. 189–199, 1999.

I. Matsuura, S. Mizuno, and H. Hashiba, “Acidic properties of molybdate-based catalysts for propylene oxidation,” Polyhedron, vol. 5, no. 1–2, pp. 111–117, 1986.

A. de Oliveira et al., “Yellow Znx Ni1−xWO4 pigments obtained using a polymeric precursor method,” Dye. Pigment., vol. 77, no. 1, pp. 210–216, 2008.

G. M. Clark and W. P. Doyle, “Infra-red spectra of anhydrous molybdates and tungstates,” Spectrochim. Acta, vol. 22, no. 8, pp. 1441–1447, 1966.

S. A. Redfern, “Hard-mode infrared study of the ferroelastic phase transition in CuWO4 - ZnWO4 mixed crystals,” Phys. Rev. B, vol. 48, no. 9, pp. 5761–5765, 1993.

K. Chen, E. Iglesia, and A. T. Bell, “Kinetic Isotopic Effects in Oxidative Dehydrogenation of Propane on Vanadium Oxide Catalysts,” J. Catal., vol. 192, no. 1, pp. 197–203, 2000.

Y. R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, 1st ed. Florida, USA: CRC Press, 2002.

G. Centi, F. Cavani and F. Trifirò, Selective Oxidation by Heterogeneous Catalysis (Fundamental and Applied Catalysis), 1st ed. New York, USA: Springer Science & Business Media, 2001.

S. Sugiyama, T. Shono, D. Makino, T. Moriga, and H. Hayashi, “Enhancement of the catalytic activities in propane oxidation and H–D exchangeability of hydroxyl groups by the incorporation with cobalt into strontium hydroxyapatite,” J. Catal., vol. 214, no. 1, pp. 8–14, 2003.

D. Stern and R. K. Grasselli, “Propane Oxydehydrogenation over Molybdate-Based Catalysts,” J. Catal., vol. 167, no. 2, pp. 550–559, 1997.

B. Y. Jibril and S. Ahmed, “Oxidative dehydrogenation of propane over Co, Ni and Mo mixed oxides/MCM41 catalysts: Effects of intra- and extra-framework locations of metals on product distributions,” Catal. Commun., vol. 7, no. 12, pp. 990–996, 2006.

D. Stern and R. K. Grasselli, “Propane Oxydehydrogenation over Metal Tungstates,” J. Catal., vol. 167, no. 2, pp. 570–572, 1997.

Descargas

Publicado

2017-09-25

Cómo citar

Salamanca-Gúzman, M., Licea-Fonseca, Y. E., Echavarría-Isaza, A., Faro, A., & Palacio-Santos, L. A. (2017). Deshidrogenación oxidativa de propano con materiales a base de cobalto, tungsteno y molibdeno. Revista Facultad De Ingeniería Universidad De Antioquia, (84), 97–104. https://doi.org/10.17533/udea.redin.n84a11