Caracterización hidrogeoquímica e identificación de un sistema de flujos regionales. Caso de estudio: acuífero del Golfo de Urabá, Colombia
DOI:
https://doi.org/10.17533/udea.redin.n86a02Palabras clave:
agua subterránea, modelo hidrogeológico conceptual, calidad del aguaResumen
La hidrogeoquímica constituye una herramienta fundamental para la verificaciónde los modelos conceptuales, en particular los modelos de flujo de aguas subterráneas,esto se hace aún más relevante cuando se tienen modelos hidrogeológicos complejosen los que se intercalan capas de distinta permeabilidad e intervienen flujos regionales.Analizando las características del Acuífero del Golfo de Urabá y secciones geológicas,fue posible establecer procesos que explican la evolución del flujo del agua subterráneay las zonas de recarga del acuífero. Se utilizaron 4 líneas de flujo para mostrar laevolución del agua subterránea de facies Ca2+-HCO3-y una concentración de STD de400 mg/L aproximadamente, pasando por facies Ca2+-Mg2+-HCO3-y Na+-Mg2+-HCO3-,y finalizando con una facies Na+-HCO3-, cerca de la zona de descarga, con STD=1,550mg/L aproximadamente. Algunos datos de isotopos estables sustentan la verificación delos sentidos de flujo hidrogeológico. También es claro que los ordines de evolución secorresponden con las posibles velocidades de flujo en zona con gradiente homogéneo perocondiciones de conductividad hidráulica más altas en el sur y centro que en el norte.
Descargas
Citas
M. Price, Agua Subterránea, 2nd ed., México D.F., México: Limusa, 2007.
M. Kjellén and G. Mcgranahan, ”Comprenhensive assessment of the freshwater resources of the World,” World Meteorological Organization, Stockholm, Sweden, Tech. Rep., Jun. 1997.
J. M. Bearcock and P. L. Smedley, ”Baseline groundwater chemistry: the Sherwood Sandstone of Devon and Somerset,” British Geological Survey, Nottingham, England, Tech. Rep. OR/11/060, Mar., 2012.
P. D. Glynn and L. N. Plummer, ”Geochemistry and the understanding of ground-water systems,” Hydrogeology Journal, vol. 13, no. 1, pp. 263-287, 2005.
Instituto Colombiano de Geología y Minería, Evaluación del agua subterránea en la región de Urabá, Antioquia, Instituto Colombiano de Geología y Minería, Apartadó, Colombia, 2005.
T. Betancur, ”Modelamiento de acuíferos utilizando sistemas de información geográfica para la región de Urabá,” M.S. thesis, Universidad Nacional, Medellín, Colombia, 1996.
P. P. Villegas, ”Caracterización Isotópica del acuífero del golfo de Urabá, Utilizando 2H, 18O, 14C y 13C,” M.S. thesis, Universidad de Antioquia, Medellín, Colombia, 2013.
J. C. Duque et al., ”Modelación de la geometría de un sistema acuífero complejo – multicapa-. Caso de estudio: Urabá antioqueño, Colombia,” in XIII Congreso de Hidrogeología ALHSUD, Merida, México, 2016, pp. 169-175.
V. Thanh, O. Batelaan, T. Thanh, and P. Quy, ”Three-dimensional hydrostratigraphical modelling to support evaluation of recharge and saltwater intrusion in a coastal groundwater system in Vietnam,” Hydrogeology Journal, vol. 22, no. 8, pp. 1749-1762, 2014.
A. Meesters, C. J. Hemker, and E. H. Berg, ”An approximate analytical solution for well flow in anisotropic layered aquifer systems,” Journal of Hydrology, vol. 296, no. 1-4, pp. 241-253, 2004.
P. Shand, W. M. Edmunds, A. R. Lawrence, P. L. Smedley, and S. Burke, ”The natural (baseline) quality of groundwater in England and Wales,” British Geological Survey, Nottingham, England, Tech. Rep. NC/99/74/24, 2007.
S. Chaudhuri and S. Ale, ”Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas,” Science of the Total Environment, vol. 452-453, pp. 333-348, 2013.
W. M. Edmunds, P. Shand, P. Hart, and R. S. Ward, ”The natural (baseline) quality of groundwater: a UK pilot study,” Science of the Total Environment, vol. 310, no. 1-3, pp. 25-35, 2003.
C. Appelo and D. Postma, Geochemistry, groundwater and pollution, 2nd ed. Amsterdam, Netherlands: Balkema, 2005.
W. M. Edmunds and P. L. Smedley, ”Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer,” Applied Geochemistry, vol. 15, no. 6, pp. 737-752, 2000.
B. Y. Choi et al., ”Hydrogeochemical interpretation of South Korean groundwater monitoring data using Self-Organizing Maps,” Journal of Geochemical Exploration, vol. 137, pp. 73-84, 2014.
R. Anders, G. O. Mendez, K. Futa, and W. R. Danskin, ”A Geochemical Approach to Determine Sources and Movement of Saline Groundwater in a Coastal Aquifer,” Ground Water, vol. 52, no. 5, pp.756-768, 2014.
R. Mokrik, V. Juodkazis, A. Stuopis, and J. Mazeika, ”Isotope geochemistry and modelling of the multi-aquifer system in the eastern part of Lithuania,” Hydrogeology Journal, vol. 22, no. 4, pp.925-941, 2014.
A. C. King, M. Raiber, and M. E. Cox, ”Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer-stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia,” Hydrogeology Journal, vol. 22, no. 2, pp. 481-500, 2014.
K. H. Kim, S. T. Yun, H. K. Kim, and J. W. Kim, ”Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches,” Journal of Geochemical Exploration, vol. 148, pp. 196-205, 2015.
N. Montcoudiol, J. Molson, and J. M. Lemieux, ”Groundwater geochemistry of the Outaouais Region (Québec, Canada): a regional-scale study,” Hydrogeology Journal, vol. 23, no. 2, pp. 377-396, 2015.
L. Belkhiri, A. Boudoukha, L. Mouni, and T. Baouz, ”Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater - A case study: Ain Azel plain (Algeria),” Geoderma, vol. 159, no. 3-4, pp. 390-398, 2010.
M. Demlie, S. Wohnlich, F. Wisotzky, and B. Gizaw, ”Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia,” Hydrogeology Journal, vol. 15, no. 6, pp. 1169-1181, 2007.
L. Dassi, ”Use of chloride mass balance and tritium data for estimation of groundwater recharge and renewal rate in an unconfined aquifer from North Africa: a case study from Tunisia,” Environmental Earth Science, vol. 60, no. 4, pp. 861-871, 2010.
L. Dassi, ”Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach,” Applied Geochemistry, vol. 26, no. 8, pp. 1386-1398, 2011.
A. Rautio and K. Niemi, ”Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland,” Hydrogeology Journal, vol. 23, no. 4, pp. 687-705, 2015.
N. Gassama, H. Uwe, A. Dia, C. Cocirta, and M. Bouhnik, ”Discrimination between different water bodies from a multilayered aquifer (Kaluvelly watershed, India): Trace element signature,” Applied Geochemistry, vol. 27, no. 3, pp. 715-728, 2012.
P. Villegas, V. Paredes, T. Betancur, and L. Ribeiro, ”Assessing the hydrochemistry of the Urabá Aquifer, Colombia by principal component analysis,” Journal of Geochemical Exploration, vol. 134, pp. 120-129, 2013.
IDEAM, Guía para el Monitoreo de Aguas Subterráneas, IDEAM, Bogotá, Colombia, 2004.
Organización Internacional de Normalización, Requisitos generales para la competencia de los laboratorios de ensayo y de calibración, ISO/IEC 17025:2005, 2005.
A. W. Hounslow, Water Quality Data: analysis and interpretation, 1st ed. Oklahoma, USA: CRC Press, 1995.
ROCKWARE, 2010. Rockworks [CD Room] Version 15, USA. Computacional program. https://www.rockware.com/product/rockworks/.
WATERLOO HYDROGEOLOGIC, 2015. Aquachem [CD Room] Versión 4.0, Canadá. Computacional program. https://www.waterloohydrogeologic.com/aquachem/.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.