Hydrogeochemical characterization and identification of a system of regional flow. Case study: the aquifer on the Gulf of Urabá, Colombia
DOI:
https://doi.org/10.17533/udea.redin.n86a02Keywords:
groundwater, conceptual hydrogeological model, water qualityAbstract
Hydrogeochemistry is an essential tool for the verification of conceptual models, especially of groundwater flow models. This is even more relevant when dealing with complex hydrogeological models that have intercalating layers with different degrees of permeability, and regional flows contributing to the system. The hydrogeochemical characteristics of the Urabá-Colombia Aquifer and geological cross-sections were studied to establish possible processes that explain the groundwater flow evolution and the recharge zones. 4 flow lines were considered to show the groundwater evolution from Ca2+-HCO3 - facies and a TDS concentration of approximately 400 mg/L, trough Ca2+-Mg2+-HCO3 - and Na+ -Mg2+-HCO3 - facies, ending with Na+ -HCO3 - facies close to discharge area, with TDS=1,550 mg/L. Data on stable isotopes confirmed the groundwater flow directions. It is also clear that evolution orders correspond to the possible flow rates in areas with a homogeneous gradient, but with higher hydraulic conductivity conditions to the south and center, compared to the north.
Downloads
References
M. Price, Agua Subterránea, 2nd ed., México D.F., México: Limusa, 2007.
M. Kjellén and G. Mcgranahan, ”Comprenhensive assessment of the freshwater resources of the World,” World Meteorological Organization, Stockholm, Sweden, Tech. Rep., Jun. 1997.
J. M. Bearcock and P. L. Smedley, ”Baseline groundwater chemistry: the Sherwood Sandstone of Devon and Somerset,” British Geological Survey, Nottingham, England, Tech. Rep. OR/11/060, Mar., 2012.
P. D. Glynn and L. N. Plummer, ”Geochemistry and the understanding of ground-water systems,” Hydrogeology Journal, vol. 13, no. 1, pp. 263-287, 2005.
Instituto Colombiano de Geología y Minería, Evaluación del agua subterránea en la región de Urabá, Antioquia, Instituto Colombiano de Geología y Minería, Apartadó, Colombia, 2005.
T. Betancur, ”Modelamiento de acuíferos utilizando sistemas de información geográfica para la región de Urabá,” M.S. thesis, Universidad Nacional, Medellín, Colombia, 1996.
P. P. Villegas, ”Caracterización Isotópica del acuífero del golfo de Urabá, Utilizando 2H, 18O, 14C y 13C,” M.S. thesis, Universidad de Antioquia, Medellín, Colombia, 2013.
J. C. Duque et al., ”Modelación de la geometría de un sistema acuífero complejo – multicapa-. Caso de estudio: Urabá antioqueño, Colombia,” in XIII Congreso de Hidrogeología ALHSUD, Merida, México, 2016, pp. 169-175.
V. Thanh, O. Batelaan, T. Thanh, and P. Quy, ”Three-dimensional hydrostratigraphical modelling to support evaluation of recharge and saltwater intrusion in a coastal groundwater system in Vietnam,” Hydrogeology Journal, vol. 22, no. 8, pp. 1749-1762, 2014.
A. Meesters, C. J. Hemker, and E. H. Berg, ”An approximate analytical solution for well flow in anisotropic layered aquifer systems,” Journal of Hydrology, vol. 296, no. 1-4, pp. 241-253, 2004.
P. Shand, W. M. Edmunds, A. R. Lawrence, P. L. Smedley, and S. Burke, ”The natural (baseline) quality of groundwater in England and Wales,” British Geological Survey, Nottingham, England, Tech. Rep. NC/99/74/24, 2007.
S. Chaudhuri and S. Ale, ”Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas,” Science of the Total Environment, vol. 452-453, pp. 333-348, 2013.
W. M. Edmunds, P. Shand, P. Hart, and R. S. Ward, ”The natural (baseline) quality of groundwater: a UK pilot study,” Science of the Total Environment, vol. 310, no. 1-3, pp. 25-35, 2003.
C. Appelo and D. Postma, Geochemistry, groundwater and pollution, 2nd ed. Amsterdam, Netherlands: Balkema, 2005.
W. M. Edmunds and P. L. Smedley, ”Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer,” Applied Geochemistry, vol. 15, no. 6, pp. 737-752, 2000.
B. Y. Choi et al., ”Hydrogeochemical interpretation of South Korean groundwater monitoring data using Self-Organizing Maps,” Journal of Geochemical Exploration, vol. 137, pp. 73-84, 2014.
R. Anders, G. O. Mendez, K. Futa, and W. R. Danskin, ”A Geochemical Approach to Determine Sources and Movement of Saline Groundwater in a Coastal Aquifer,” Ground Water, vol. 52, no. 5, pp.756-768, 2014.
R. Mokrik, V. Juodkazis, A. Stuopis, and J. Mazeika, ”Isotope geochemistry and modelling of the multi-aquifer system in the eastern part of Lithuania,” Hydrogeology Journal, vol. 22, no. 4, pp.925-941, 2014.
A. C. King, M. Raiber, and M. E. Cox, ”Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer-stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia,” Hydrogeology Journal, vol. 22, no. 2, pp. 481-500, 2014.
K. H. Kim, S. T. Yun, H. K. Kim, and J. W. Kim, ”Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches,” Journal of Geochemical Exploration, vol. 148, pp. 196-205, 2015.
N. Montcoudiol, J. Molson, and J. M. Lemieux, ”Groundwater geochemistry of the Outaouais Region (Québec, Canada): a regional-scale study,” Hydrogeology Journal, vol. 23, no. 2, pp. 377-396, 2015.
L. Belkhiri, A. Boudoukha, L. Mouni, and T. Baouz, ”Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater - A case study: Ain Azel plain (Algeria),” Geoderma, vol. 159, no. 3-4, pp. 390-398, 2010.
M. Demlie, S. Wohnlich, F. Wisotzky, and B. Gizaw, ”Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia,” Hydrogeology Journal, vol. 15, no. 6, pp. 1169-1181, 2007.
L. Dassi, ”Use of chloride mass balance and tritium data for estimation of groundwater recharge and renewal rate in an unconfined aquifer from North Africa: a case study from Tunisia,” Environmental Earth Science, vol. 60, no. 4, pp. 861-871, 2010.
L. Dassi, ”Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach,” Applied Geochemistry, vol. 26, no. 8, pp. 1386-1398, 2011.
A. Rautio and K. Niemi, ”Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland,” Hydrogeology Journal, vol. 23, no. 4, pp. 687-705, 2015.
N. Gassama, H. Uwe, A. Dia, C. Cocirta, and M. Bouhnik, ”Discrimination between different water bodies from a multilayered aquifer (Kaluvelly watershed, India): Trace element signature,” Applied Geochemistry, vol. 27, no. 3, pp. 715-728, 2012.
P. Villegas, V. Paredes, T. Betancur, and L. Ribeiro, ”Assessing the hydrochemistry of the Urabá Aquifer, Colombia by principal component analysis,” Journal of Geochemical Exploration, vol. 134, pp. 120-129, 2013.
IDEAM, Guía para el Monitoreo de Aguas Subterráneas, IDEAM, Bogotá, Colombia, 2004.
Organización Internacional de Normalización, Requisitos generales para la competencia de los laboratorios de ensayo y de calibración, ISO/IEC 17025:2005, 2005.
A. W. Hounslow, Water Quality Data: analysis and interpretation, 1st ed. Oklahoma, USA: CRC Press, 1995.
ROCKWARE, 2010. Rockworks [CD Room] Version 15, USA. Computacional program. https://www.rockware.com/product/rockworks/.
WATERLOO HYDROGEOLOGIC, 2015. Aquachem [CD Room] Versión 4.0, Canadá. Computacional program. https://www.waterloohydrogeologic.com/aquachem/.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.