Corrosion protection in saline environment of a carbon steel coated (aluminum & three-layer painting system) by eats

Keywords: Aluminum, Corrosion, EATS, Paint, Saline environment


This paper presents a comparative study on corrosion protection of low-carbon steel coated with two different painting systems. The first set of samples was coated with an aluminum layer of primer deposited by Electric Arc Thermal Spray (EATS), after which two additional layers of paint were applied, thereby creating an aluminum-painting system; while the second set of samples was coated with the traditional three-layer painting system (zinc-rich layer of primer). Afterwards, all the samples were exposed to the salt spray chamber. The samples were monitored to record their reactions in the corrosive saline environment. Scanning Electron Microscopy (SEM), adhesion and electrochemical corrosion tests were performed to characterize the coatings and report changes in their properties (adhesion, topography and homogeneity), which are related to exposure time. The three-layer painting system barely complied with manufacturer claims on protection time under corrosive conditions; on the other hand, the aluminum-painting system yielded better results by prolonging protection time.

= 98 veces | PDF
= 112 veces|


Download data is not yet available.

Author Biographies

Diego Pérez-Muñoz, Technological University of Pereira

Professor and researcher, Faculty of Mechanical Engineering.


José Luddey Marulanda-Arévalo, Technological University of Pereira

Faculty of Mechanical Engineering.

Carlos Mauricio Moreno-Tellez, Pedagogical and Technological University of Colombia

Faculty of Engineering.


H. Y. Li, J. Y. Duan, and D. D. Wei, “Comparison on corrosion behaviour of arc sprayed and zinc-rich coatings,” Surface and Coatings Technology, vol. 235, pp. 259–266, Nov. 2013.

H. S. Lee, J. K. Singh, and J. H. Park, “Pore blocking characteristics of corrosion products formed on aluminum coating produced by arc thermal metal spray process in 3.5 wt.% nacl solution,” Construction and Building Materials, vol. 113, pp. 905–916, Jun. 2016.

J. L. Marulanda, J. L. Tristancho, and H. A. González, “La tecnología de recuperación y protección contra el desgaste está en el rociado térmico,” Revista Prospectiva, vol. 12, no. 1, pp. 70–78, Jan. 2014.

J. L. Marulanda and J. L. Tristancho and H. A. González, Rociado térmico, 1st ed. Pereira, Colombia: Universidad Tecnológica de Pereira, 2015.

J. E. Montoya, F. Vargas, and J. A. Calderón, “evaluación de la capacidad protectora de recubrimientos Ni-SiC y Ni-Co-W depositados por proyección térmica,” Dyna, vol. 76, no. 160, pp. 195–206, 2009.

E. Armelin and et al., “Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint,” Corrosion Science, vol. 50, no. 3, pp. 721–728, Mar. 2008.

K. Schaefer and A. Miszczyk, “Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc,” Corrosion Science, vol. 66, pp. 380–391, Jan. 2013.

E. Akbarinezhad, M.Ebrahimi, F.Sharif, and A.Ghanbarzadeh, “Evaluating protection performance of zinc rich epoxy paints modified with polyaniline and polyaniline-clay nanocomposite,” Progress in Organic Coatings, vol. 77, no. 8, pp. 1299–1308, Aug. 2014.

A. A. Guzmán and L. M. Ocampo, “Evaluación de la resistencia a la corrosión del sistema primer epóxico rico en zinc/acabado polisiloxano por medio de espectroscopia de impedancia electroquímica,” Dyna, vol. 78, no. 167, pp. 87–95, 2011.

H. F. Rojas, J. J. Olaya, and C. A. Molina, “Caracterización morfológica de los recubrimientos 140mxc-530as y 140mxc-560as usando la técnica de proyección térmica por arco eléctrico,” Ingeniería, Investigación y Tecnología, vol. 17, no. 1, pp. 1–13, Jan. 2016.

J. L. Marulanda, J. L. Tristancho, and L. A. Cañas, “Protección contra la corrosión en sales fundidas de un acero hot rolled, en el rango de temperaturas de 400 ºc–600 ºc, recubierto por rociado térmico con acero inoxidable 312,” Dyna, vol. 76, no. 160, pp. 229–235, 2009.

H. A. M. Muhamad, N. H. Saad, S. K. Abas, N. R. N. Roselina, and M. S. Noriyati, “Performance and microstructure analysis of 99.5coating by thermal arc spray technique,” Procedia Engineering, vol. 68, pp. 558–565, 2013.

R. M. H. Pombo, R. S. C. Paredes, S. H. Wido, and A. Calixto, “Comparison of aluminum coatings deposited by flame spray and by electric arc spray,” Surface and Coatings Technology, vol. 202, no. 1, pp. 172–179, Nov. 2007.

M. K. Hedges, A. P. Newbery, and P. S. Grant, “Characterisation of electric arc spray formed ni superalloy in718,” Materials Science and Engineering: A, vol. 326, no. 1, pp. 79–91, Mar. 2002.

J. E. Muñoz and J. J. Coronado, “Análisis mecánico y tribológico de los recubrimientos Fe-Cr-Ni-C y Ni-Al-Mo,” Dyna, vol. 74, no. 153, pp. 111–118, 2007.

A. P. Newbery and P. S. Grant, “Oxidation during electric arc spray forming of steel,” Journal of Materials Processing Technology, vol. 178, no. 1-3, pp. 259–269, Sep. 2006.

W. L. Hsu, H. Murakami, J. W. Yeh, A. C. Yeh, and K. Shimoda, “On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating,” Surface and Coatings Technology, vol. 316, pp. 71–74, Apr. 2017.

F. Ahnia and B. Demri, “Evaluation of aluminum coatings in simulated marine environment,” Surface and Coatings Technology, vol. 220, pp. 232–236, Apr. 2013.

A. Perez and et al., “Influence of metallurgical states on the corrosión behaviour of Al–Zn PVD coatings in saline solution,” Corrosion Science, vol. 74, pp. 240–249, Sep. 2013.

M. Barletta, A. Gisario, M. Puopolo, and S. Vesco, “Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier,” Materials & Design, vol. 69, pp. 130–140, Mar. 2015.

H. Shi, F. Liu, and E. H. Han, “The corrosion behavior of zinc-rich paints on steel: Influence of simulated salts deposition in an offshore atmosphere at the steel/paint interface,” Surface and Coatings Technology, vol. 205, no. 19, pp. 4532–4539, Jun. 2011.

L. Veleva, J. Chin, and B. del amo, “Corrosion electrochemical behavior of epoxy anticorrosive paints based on zinc molybdenum phosphate and zinc oxide,” Progress in Organic Coatings, vol. 36, no. 4, pp. 211–216, Sep. 1999.

Q. Jiang and et al., “Electrochemical corrosion behavior of arc sprayed Al–Zn–Si–RE coatings on mild steel in 3.5% nacl solution,” Transactions of Nonferrous Metals Society of China, vol. 24, no. 8, pp. 2713–2722, Aug. 2014.

Y. F. Yan and et al., “Hot corrosion behaviour and its mechanism of a new alumina-forming austenitic stainless steel in molten sodium sulphate,” Corrosion Science, vol. 77, pp. 202–209, Dec. 2013.

Q. X. Fan, S. M. Jiang, H. J. Yu, J. Gong, and C. Sun, “Microstructure and hot corrosion behaviors of two co modified aluminide coatings on a ni-based superalloy at 700 °c,” Applied Surface Science, vol. 311, pp. 214–223, Aug. 2014.

R. Li, Z. Zhou, D. He, L. Zhao, and X. Song, “Microstructure and hightemperature oxidation behavior of wire-arc sprayed fe-based coatings,” Surface and Coatings Technology, vol. 251, pp. 186–190, Jul. 2014.

M. Hafiz, N. Hayati, S. Kiyai, and N. Mohd, “Thermal arc spray overview,” in IOP Conf. Series: Materials Science and Engineering, Bandung, Indonesia, 2013, pp. 1–10.

L. Baiamonte and et al., “Thermal sprayed coatings for hot corrosión protection of exhaust valves in naval diesel engines,” Surface and Coatings Technology, vol. 295, pp. 78–87, Jun. 2016.

G. A. Awadi, S. Abdel, and E. S. Elshazly, “Hot corrosion behavior of ni based inconel 617 and inconel 738 superalloys,” Applied Surface Science, vol. 378, pp. 224–230, Aug. 2016.

B. Salehnasab, E. Poursaeidi, S. A. Mortazavi, and G. H. Farokhian, “Hot corrosion failure in the first stage nozzle of a gas turbine engine,” Engineering Failure Analysis, vol. 60, pp. 316–325, Feb. 2016.

H. He, Z. Liu, W. Wang, and C. Zhou, “Microstructure and hot corrosion behavior of Co–Si modified aluminide coating on nickel based superalloys,” Corrosion Science, vol. 100, pp. 466–473, Nov. 2015.

T. Gheno, M. Zahiri, A. H. Heuer, and B. Gleeson, “Reaction morphologies developed by nickel aluminides in type ii hot corrosión conditions: The effect of chromium,” Corrosion Science, vol. 101, pp. 32–46, Dec. 2015.

Z. Xu and et al., “Isothermal oxidation and hot corrosion behaviors of diffusion aluminide coatings deposited by chemical vapor deposition,” Journal of Alloys and Compounds, vol. 637, pp. 343–349, Jul. 2015.

Y. Liu, B. Zhang, Y. Zhang, L. Ma, and P. Yang, “Electrochemical polarization study on crude oil pipeline corrosion by the produced wáter with high salinity,” Engineering Failure Analysis, vol. 60, pp. 307–315, Feb. 2016.

Y. Zou, J. Wang, and Y. Y. Zheng, “Electrochemical techniques for determining corrosion rate of rusted steel in seawater,” Corrosion Science, vol. 53, no. 1, pp. 208–216, Jan. 2011.

How to Cite
Pérez-MuñozD., Marulanda-ArévaloJ. L., & Moreno-TellezC. M. (2018). Corrosion protection in saline environment of a carbon steel coated (aluminum & three-layer painting system) by eats. Revista Facultad De Ingeniería Universidad De Antioquia, (89), 26-33.