Evaluación del efecto del método de síntesis sobre el desempeño de la espinela de manganeso como material de cátodo en baterías de ion-litio
DOI:
https://doi.org/10.17533/udea.redin.n87a06Palabras clave:
batería ion-litio, espinela de manganeso, síntesis en estado sólido, sol-gel, sustitución elementalResumen
Los óxidos de manganeso con estructura tipo espinela (LiMn2O4) han sido utilizados con éxito como materiales de cátodo para las baterías de ion-litio. Para mejorar la capacidad e incrementar el potencial de descarga de la batería, comúnmente se han adicionado metales de transición a la espinela, como dopantes o sustituyentes del manganeso. Esto puede conferirle también estabilidad a la estructura del material de cátodo. En este trabajo se evaluó la obtención y el desempeño de las espinelas deLiMn2O4 (LMO) y LiN i0.5Mn1.5O4 (LNMO) obtenidas por procesos de síntesis en estado sólido y sol-gel se estudiaron. Los materiales sinterizados de (LMO) y (LMNO) se caracterizaron por espectroscopia Raman y difracción de rayos X (DRX) para evidenciar la formación de la estructura tipo espinela. Fue corroborado que mediante ambos métodos de síntesis se puede producir una estructura de espinela adecuada. El análisis SEM mostró en general que la espinela adquiere una forma octahedral. El tamaño de partícula cambia de acuerdo al método de síntesis empleado, obteniendo un menor tamaño de partícula en la síntesis por sol-gel. La caracterización electroquímica demuestra que la síntesis por estado sólido genera componentes con mayor pureza y cristalinidad, los cuales generan una mayor capacidad de intercalación de iones litio. La adición de níquel a la espinela incrementa el potencial de descarga del cátodo en 0.5V.
Descargas
Citas
G. Rayner, Química Inorgánica Descriptiva, 2nd ed. México, D.F: Pearson Educación, 2000.
Y. S. Meng and M. E. A. Dompablo, “Recent advances in first principles computational research of cathode materials for lithium-ion batteries,” Acc. Chem. Res., vol. 46, no. 5, pp. 1171–1180, 2013.
G. B. Zhong, Y. Y. Wang, Y. Q. Yu, and C. H. Chen, “Electrochemical investigations of the lini0.45m0.10mn1.45o4 (m = fe, co, cr) 5v cathode materials for lithium ion batteries,” J. Power Sources, vol. 205, pp. 385–393, May 2012.
T. F. Yi, Y. Xie, Y. R. Zhu, R. S. Zhu, and M. F. Ye, “High rate micron-sized niobium-doped limn1.5ni0.5o4 as ultra high power positive-electrode material for lithium-ion batteries,” J. Power Sources, vol. 211, pp. 59–65, Aug. 2012.
J. H. Wesseling, E. M. Niesten, J. Faber, and M. P. Hekkert, “Business strategies of incumbents in the market for electric vehicles: Opportunities and incentives for sustainable innovation,” Bus. Strateg. Environ., vol. 24, no. 6, pp. 518–531, Dec. 2015.
D. L. Wood, J. Li, and D. Claus, “Prospects for reducing the processing cost of lithium ion batteries,” J. Power Sources, vol. 275, pp. 234–242, Feb. 2015.
Y. C. Jin, M. I. Lu, T. H. Wang, C. R. Yang, and J. G. Duh, “Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery,” J. Power Sources, vol. 262, pp. 483–487, Sep. 2014.
T. F. Yi, J. Mei, and Y. R. Zhu, “Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries,” J. Power Sources, vol. 316, pp. 85–105, Jun. 2016.
L. C. et al., “Life modeling of a lithium ion cell with a spinel-based cathode,” J. Power Sources, vol. 221, pp. 191–200, Jan. 2013.
J. W. W. et al., “One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of lini0.5Mn1.5O4 cathode material for lithium-ion batteries,” Electrochim. Acta, vol. 133, pp. 515–521, Jul. 2014.
X. Zhang, H. Zheng, V. Battaglia, and R. L. Axelbaum, “Flame synthesis of 5 v spinel-LiNi0.5Mn1.5O4 cathode-materials for lithium-ion rechargeable-batteries,” Proc. Combust. Inst., vol. 33, no. 2, pp. 1867–1874, 2011.
L. H. Chi, N. N. Dinh, S. Brutti, and B. Scrosati, “Synthesis, characterization and electrochemical properties of 4.8V LiNi0.5Mn1.5O4 cathode material in lithium-ion batteries,” Electrochim. Acta, vol. 55, no. 18, pp. 5110–5116, Jul. 2010.
C. Zhu, A. Nobuta, G. Saito, I. Nakatsugawa, and T. Akiyama, “Solution combustion synthesis of LiMn2 O4 fine powders for lithium ion batteries,” Adv. Powder Technol., vol. 25, no. 1, pp. 342–347, Jan. 2014.
E. H. et al., “Oxygen-Release-Related Thermal Stability and Decomposition Pathways of LixNi0.5Mn1.5o4 Cathode Materials,” Chem. Mater., vol. 26, no. 2, pp. 1108–1118, Dec. 2014.
Z. H. Chen, K. L. Huang, S. Q. Liu, and H. Y. Wang, “Preparation and characterization of spinel LiMn2O4 nanorods as lithium-ion battery cathodes,” Trans. Nonferrous Met. Soc. China, vol. 20, no. 12, pp. 2309–2313, Dec. 2010.
J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, and Y. K. Sun, “Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5 Mn1.5 O4 Cathodes Having Two Crystallographic Structures: Fd3m and P4332,” Chem. Mater., vol. 16, pp. 906–914, Feb. 2004.
A. Manthiram, K. Chemelewski, and E. S. Lee, “A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries,” Energy Environ. Sci., vol. 7, no. 4, pp. 1339–1350, 2014.
Q. Zhong, A. Bonakclarpour, M. Zhang, Y. Gao, and J. R. Dahn, “Synthesis and electrochemistry of LiNix Mn2-xO4,” J. Electrochem. Soc., vol. 144, no. 1, pp. 205–213, 1997.
J. H. Kim, S. T. Myung, and Y. K. Sun, “Molten salt synthesis of LiNi0.5Mn1.5 O4 spinel for 5 V class cathode material of Li-ion secondary battery,” Electrochim. Acta, vol. 49, no. 2, pp. 219–227, Jan. 2004.
T. Yang, K. Sun, Z. Lei, N. Zhang, and Y. Lang, “The influence of holding time on the performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery,” J. Alloys Compd., vol. 502, no. 1, pp. 215–219, Jul. 2010.
L. Wang, H. Li, X. Huang, and E. Baudrin, “A comparative study of Fd-3m and P4332 ‘LiNi0.5Mn1.5O4,” Solid State Ionics, vol. 193, no. 1, pp. 32–38, Jun. 2011.
J. S.rt al., “Role of oxygen vacancies on the performance of Li [Ni0.5−x Mn1.5+x] O4 (x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries,” Chem. Mater., vol. 24, no. 15, pp. 3101–3109, Jul. 2012.
M. A. Kebede, N. Kunjuzwa, C. J. Jafta, M. K. Mathe, and K. I. Ozoemena, “Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2-xO4 ; 0 ≤ x ≤ 0 . 2) for lithium ion battery: enhancing energy storage , capacity retention, and lithium ion transport,” Electrochim. Acta, vol. 128, pp. 172–177, May 2014.
H. W. Choi, S. J. Kim, Y. H. Rim, and Y. S. Yang, “Effect of Lithium Deficiency on Lithium-Ion Battery Cathode LixNi0.5Mn1.5O4,” J. Phys. Chem. C., vol. 119, no. 49, pp. 27 192–27 199, Nov. 2015.
G. C. Allen and M. Paul, “Chemical characterization of transition metal spinel-type oxides by infrared spectroscopy,” Appl. Spectrosc., vol. 49, no. 4, pp. 451–458, Apr. 1995.
B. Ammundsen, G. R. Burns, M. S. Islam, H. Kanoh, and J. Rozière, “Lattice dynamics and vibrational spectra of lithium manganese oxides : A computer simulation and spectroscopic study,” J. Phys. Chem. B, vol. 103, no. 25, pp. 5175–5180, Jun. 1999.
Y. Zhao, C. Ma, and Y. Li, “One-step microwave preparation of a Mn3O4 nanoparticles/exfoliated graphite composite as superior anode materials for Li-ion batteries,” Chem. Phys. Lett., vol. 673, pp. 19–23, Apr. 2017.
H. L. et al., “Morphological Evolution of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries: the Critical Effects of Surface Orientations and Particle Size,” ACS Appl. Mater. Interfaces, vol. 8, no. 7, pp. 4661–4675, Jun. 2016.
B. H. et al., “The effect of nanocrystallinity on the electrochemical performance of LiMn2O4 cathode syntetized by modified sol-gel method,” Solid State Ionics, vol. 262, no. 7, pp. 9–13, Sep. 2014.
C. M. Julien, F. Gendron, A. Amdouni, and M. Massot, “Lattice vibrations of materials for lithium rechargeable batteries. VI : Ordered spinels,” Mater. Sci. Eng. B, vol. 130, no. 7, pp. 41–48, Jun. 2006.
N. Amdouni, K. Zaghib, F. Gendron, a. Mauger, and C. M. Julien, “Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry,” Ionics, vol. 12, no. 2, pp. 117–126, Jun. 2006.
J. Yang, X. Han, X. Zhang, F. Cheng, and J. Chen, “Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m),” Nano Res., vol. 6, no. 9, pp. 679–687, Sep. 2013.
C. M. Julien, M. Massot, and C. Poinsignon, “Lattice vibrations of manganese oxides part I . periodic structures,” Spectrochim. Acta, vol. 60, pp. 689––700, Feb. 2004.
T. F. Yi, Z. K. Fang, Y. Xie, Y. R. Zhu, and L. Y. Zang, “Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast chargedischarge performance for lithium-ion battery,” Electrochim. Acta, vol. 147, pp. 250–256, Nov. 2014.
H. Liu, R. Kloepsch, J. Wang, M. Winter, and J. Li, “Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultralong-life lithium-ion battery : Positive (100) surfaces in high-voltage spinel system,” J. Power Sources, vol. 300, pp. 430–437, Dec. 2015.
K. R. Chemelewski, E. S. Lee, W. Li, and A. Manthiram, “Factors Influencing the Electrochemical Properties of High-Voltage Spinel Cathodes: Relative Impact of Morphology and Cation Ordering,” Chemistry of Materials, vol. 25, no. 14, pp. 2890–2897, Jun. 2013.
S. H. Y. et al., “Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method,” Electrochim. Acta, vol. 55, no. 8, pp. 2972–2977, Mar. 2010.
J. M. Tarascon and D. Guyomard, “Li metal-free rechargeable batteries based on Li1+xMn204 Cathodes (0 < x) and Carbon Anodes,” Journal of electrochemical society, vol. 138, no. 10, pp. 2864–2868, 1991.
D. L. et al., “Spinel materials for high-voltage cathodes in Li-ion batteries,” RSC Adv., vol. 4, pp. 154–167, Nov. 2014.
M. Hu, X. L. Pang, and Z. Zhou, “Recent progress in high-voltage lithium ion batteries,” AJ. Power Sources, pp. 229–242, Sep. 2013.
P. G. et al., “Microwave rapid preparation of LiNi0.5Mn1.5O4 and the improved high rate performance for lithium-ion batteries,” Electrochim. Acta, vol. 100, pp. 125–132, Jun. 2013.
A. C. et al., “ LiNi0.5Mn1.5O4 t hick-film electrodes prepared by electrophoretic deposition f or use i n high voltage l ithium-ion batteries,” J. Power Sources, vol. 158, no. 1, pp. 583–590, Jul. 2006.
Y. H. I. et al., “Epitaxial growth of LiMn2O4 Thin Films by Chemical Solution Deposition for Multilayer Lithium-Ion Batteries,” J. Phys. Chem. C, vol. 118, no. 34, pp. 19 540–19 547, Aug. 2014.
C. J. Jafta, M. K. Mathe, N. Manyala, W. D. Roos, and K. I. Ozoemena, “Microwave-Assisted Synthesis of High-Voltage Nanostructured LiMn1.5Ni0.5O4 Spinel: Tuning the Mn3+ Content and Electrochemical Performance,” ACS Appl. Mater. Interfaces, vol. 5, no. 15, pp. 7592–7598, Jul. 2013.
K. Amine, H. Tukamot, H. Yasuda, and Y. Fujita, “Preparation and electrochemical investigation of LiMn2-xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries,” J. Power Sources, vol. 68, no. 2, pp. 604–608, Oct. 1997.
H. Z. et al., “Preparation and Characterization of Ultralong Spinel Lithium Manganese Oxide Nanofiber Cathode via Electrospinning Method,” Electrochim. Acta, vol. 152, no. 25, pp. 274–279, Jan. 2015.
X. X. et al., “Synthesis of single-crystalline spinel LiMn2O4 Nanorods for lithium-ion batteries with high rate capability and long cycle life,” Chem. - A Eur. J., vol. 20, no. 51, pp. 217 125––17 131, Oct. 2014.
Q. C. Z. et al., “An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4,” J. Phys. Chem., vol. 114, no. 18, pp. 8614–8621, Apr. 2010.
J. Bisquert, G. Garcia, F. Fabregat, and P. R. Bueno, “Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion,” J. Electroanal. Chem., vol. 475, no. 2, pp. 152–163, Oct. 1999.
B. H. et al., “Determination of effective capacitance and film thickness from constant-phase-element parameters,” Electrochim. Acta J., vol. 55, no. 21, pp. 6218–6227, Aug. 2010.
F. C. et al., “Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2,” J. Power Sources, vol. 239, pp. 181–188, Oct. 2013.
M. M. et al., “Improved cycling and rate performance of sm-doped LiNi0.5Mn1.5O4 cathode materials for 5 v lithium ion batteries,” Appl. Surf. Sci., vol. 290, pp. 412–418, Jan. 2014.
H. W. et al., “Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries„” Electrochim. Acta, vol. 177, pp. 290–297, Sep. 2015.
M. Kunduraci, J. F. Sharab, G. G. Amatucci, and Other, “High-Power nanostructured LiMn2 - xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials : Electrochemical Impact of Electronic Conductivity and Morphology,” Chem. Mater, vol. 18, no. 15, pp. 3585–3592, Jul. 2006.
M. Kunduraci, J. F. Sharab, and G. G. Amatucci, “High Rate Micron-Sized Ordered LiNi0.5Mn1.5O4,” J. Electrochem. Soc, vol. 157, no. 8, pp. 925–931, Jun. 2010.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.