Evaluación del escalamiento de un reactor para el tratamiento de efluentes textiles usando Bjerkandera sp

Autores/as

  • María Isabel Gaviria-Arroyave Universidad EIA https://orcid.org/0000-0002-8773-727X
  • Juliana Osorio-Echavarría Universidad de Antioquia
  • Natalia Andrea Gómez-Vanegas Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.n88a09

Palabras clave:

hongos de la madera, agua residual industrial, colorante, biorremediación, lecho fijo

Resumen

Los efluentes provenientes de industrias textiles generan impactos ambientales negativos, debido a altas cargas de colorantes y compuestos de difícil remoción como aditivos, detergentes y surfactantes, los cuales deben ser tratados antes de ser descargados a cuerpos de agua. Los hongos ligninolíticos han mostrado gran potencial para procesos de biorremediación de aguas y suelos contaminados con compuestos recalcitrantes y generalmente tóxicos. Este trabajo, se enfoca en el diseño y evaluación del desempeño de un reactor de 5L de lecho fijo para la degradación de efluentes de la industria textil en condiciones no estériles y operación continua, usando el hongo ligninolítico Bjerkandera sp. en su estado anamorfo R1. Dicha tecnología se desarrolló tomando como base para realizar el diseño un biorreactor modelo de lecho de fijo de 0,25 L. El sistema de 5L se diseñó teniendo en cuenta la similitud geométrica e hidrodinámica. En los ensayos de decoloración en continuo el reactor se operó a un tiempo de retención hidráulica (TRH) de 36 h, aireación de 1 L/min y 33°C, además de una carga de colorante de 75g/L para el Negro sulfuroso y 6,5g/L para índigo Vatblue; se alcanzó una decoloración del 69% y se identificaron cambios en las estructuras químicas de los colorantes presentes en el agua residual después del tratamiento, mostrando la actividad ligninolítica del microorganismo como el principal mecanismo de remoción de color.

|Resumen
= 738 veces | PDF (ENGLISH)
= 610 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

María Isabel Gaviria-Arroyave, Universidad EIA

Dirección de Investigación.

Juliana Osorio-Echavarría, Universidad de Antioquia

Grupo de Investigación de Bioprocesos, Facultad de Ingeniería.

Natalia Andrea Gómez-Vanegas, Universidad de Antioquia

Grupo de Investigación de Bioprocesos, Facultad de Ingeniería.

Citas

A. P. Restrepo and et al., Evaluación técnica y económica de tecnologías para reuso de aguas de proceso en industrias de los sectores alimentos, textil, curtiembres y galvanoplastia, 1st ed. Medellín, Colombia: IMPREGÓN S.A, 2005.

T. A. Nguyen and R. S. Juang, “Treatment of waters and wastewaters containing sulfur dyes: A review,” Chemical ngineering Journal, vol. 219, pp. 109–117, Mar. 2013.

H. Hayat, Q. Mahmood, A. Pervez, Z. A. Bhatti, and S. A. Baig, “Comparative decolorization of dyes in textile wastewater using biological and chemical treatment,” Separation and Purification Technology, vol. 154, pp. 149–153, Nov. 2015.

J. Khatri, P. V. Nidheesh, T. S. Anantha, and M. Suresh, Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater,” Chemical Engineering Journal, vol. 348, pp. 67–73, Sep. 2018.

A. Anastasi and et al., Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes,” New Biotechnology, vol. 29, no. 1, pp. 38–45, Dec. 2011.

X. L. He and et al., “Efficient degradation of azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions,” Ecotoxicology and Environmental Safety, vol. 150, pp. 232–239, Apr. 2018.

M. A. Amoozegar, M. Hajighasemi, J. Hamedi, S. Asad, and A. Ventosa, “Azo dye decolorization by halophilic and halotolerant microorganisms,” Annuals of Microbiology, vol. 61, no. 2, pp. 217–230, Jun. 2011.

M. Bilal, M. Iqbal, H. Hu, and X. Zhang, “Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes,” Water Science & Technology, vol. 73, no. 10, pp. 2332–2344, May 2016.

M. Solís, A. Solís, H. I. Peréz, N. Manjarrez, and M. Flores, “Microbial decolouration of azo dyes: A review,” Process Biochemistry, vol. 47, no. 12, pp. 1723–1748, Dec. 2012.

J. Pérez, J. Valldeperas, M. J. Lis, J. A. Navarro, and I. Conde. (2006) Reducción electroquímica de colorantes sulfurosos vías de proceso.[Online]. Available: https://upcommons.upc.edu/bitstream/handle/2099/4693/7reducci%F3n+electroqu%EDmica.pdf;jsessionid=B20A5928A8735173FE5EBF0CC1C2C823?sequence=1

R. C. Garzon, “Cinética de degradación de colorantes textiles de diferentes clases químicas por hongos y bacterias inmovilizados en fibra de Agave tequiliana webber var azul,” M.S. thesis, Fac.Ing., Pontificia Universidad Javeriana, Bogotá, Colombia, 2009.

Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh, and G. M. Walker, “Effect of solution ph, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon,” Dyes and Pigments, vol. 77, no. 1, pp. 16–23, 2008.

E. Forgacs, T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environment International, vol. 30, no. 7, pp. 953–971, Sep. 2004.

J. F. Osma, J. L. Toca, and S. Rodríguez, “Cost analysis in laccase production,” Journal of Environmental Management, vol. 92, no. 11, pp. 2907–2912, Jul. 2011.

S. Rodríguez, “A promising inert support for laccase production and decolouration of textile wastewater by the white-rot fungus trametes pubescesns,” Journal of hazardous materials, vol. 233-34, pp. 158–162, Sep. 2012.

M. Čvančarová, Z. Křesinová, A. Filipová, S. Covino, and T. Cajthaml, “Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products,” Chemosphere, vol. 88, no. 11, pp. 1317–1323, Sep. 2012.

A. H. Molla and H. I. Khan, “Detoxification of textile effluent by fungal treatment and its performance in agronomic usages,” Environmental Science and Pollution Research, vol. 25, no. 11, pp. 10 820–10 828, Apr. 2018.

P. Blánquez, M. Sarrà, and T. Vicent, “Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions,” Process Biochemistry, vol. 43, no. 1, pp. 1–7, Jan. 2008.

D. Bhatia, N. R. Sharma, J. Singh, and R. S. Kanwar, “Biological methods for textile dye removal from wastewater: A review,” Critical Reviews in Environmental Science and Technology, vol. 47, no. 19, pp. 1836–1876, Oct. 2017.

R. Taboada and et al., “A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase,” World Journal of Microbiology and Biotechnology, vol. 27, no. 1, pp. 115–122, Jan. 2011.

Colour Index International, 3rd ed., Society of Dyers and Colourists and AATCC, Bradford, UK, 1987.

M. A. Mazmanci and A. Ünyayar, “Decolourisation of reactive black 5 by Funalia trogii immobilised on Luffa cylindrica sponge,” Process Biochemistry, vol. 40, no. 1, pp. 337–342, Jan. 2005.

J. Osorio, “Evaluación de la decoloración de efluentes industriales en un reactor de lecho fijo empleando el hongo de la pudrición blanca de la madera antracophyllum discolor,” M.S. thesis, Fac. Ing., Universidad de Antioquia, Medellín, Colombia, 2010.

S. Ntwampe, F. Chowdhury, M. Sheldon, and H. Volschenk, “Overview of parameters influencing biomass and bioreactor performance used for extracellular ligninase production from Phanerochaete chrysosporium,” Brazilian Archives of Biology and Technology, vol. 53, no. 5, pp. 1057–1066, Sep. 2010.

J. J. Carberry and R. H. Bretton, “Axial dispersion of mass in flow through fixed beds,” AIChE Journal, vol. 4, no. 3, pp. 367–375, Sep. 1958.

M. Zlokarnik, Scale-Up in Chemical Engineering, 2nd ed. Austria: Wiley-Vch, 2002.

E. B. Nauman, Chemical reactor design , optimization and scaleup, 1st ed. New York, USA: McGraw Hill, 2001.

N. Wakao and S. Kaguei, Heat and Mass transfer in packed beds, 1st ed. New York, USA: Gordon and Breach, Science Publishers, 1986.

G. Taylor, “Dispersion of soluble matter in solvent flowing slowly through a tube,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 219, no. 1137, pp. 186–203, Aug. 1953.

F. Kuhar, V. Castiglia, and L. Levin, “Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and trametes versicolor in solid-state fermentation,” International Biodeterioration & Biodegradation, vol. 104, pp. 238–243, Oct. 2015.

C. Novotný and et al., “The use of the fungus Dichomitus squalens for degradation in rotating biological contactor conditions,” Bioresource Technology, vol. 114, pp. 241–246, Jun. 2012.

Q. Yang, C. Li, H. Li, Y. Li, and N. Yu, “Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor,” Biochemical Engineering Journal, vol. 43, no. 3, pp. 225–230, Mar. 2009.

O. M. Gomaa, J. E. Linz, and C. A. Reddy, “Decolorization of victoria blue by the white rot fungus, Phanerochaete chrysosporium,” World Journal of Microbiology and Biotechnology, vol. 24, no. 10, pp. 2349–2356, Oct. 2008.

B. Crešnar and S. Petric, “Cytochrome p450 enzymes in the fungal kingdom,” Biochimica et Biophysica Acta, vol. 1814, no. 1, pp. 29–35, Jan. 2011.

K. Svobodová, M. Senholdt, . Novotný, and A. Rehorek, “Cytochrome p450 enzymes in the fungal kingdom,” Biochimica et Biophysica Acta, vol. 1814, no. 1, pp. 29–35, Jan. 2011.

A. Anastasi and et al., “Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta,” Bioresource Technology, vol. 101, no. 9, pp. 3067–3075, May 2010.

H. Bermek, I. Gülseren, K. Li, H. Jung, and C. Tamerler, “The effect of fungal morphology on ligninolytic enzyme production by a recently isolated wood-degrading fungus Trichophyton Rubrum lsk-27,” World Journal of Microbiology and Biotechnology, vol. 20, no. 4, pp. 345–349, Jun. 2004.

T. I. Cserháti, E. Forgács, M. H. Morais, and T. Mota, “Liquid chromatography of natural pigments,” Biomedical Chromatography, vol. 14, no. 5, pp. 281–286, Aug. 2000.

D. M. Lewis, “The chemistry of reactive dyes and their application processes,” in Handbook of textile and industrial dyeing, M. Clark, Ed. Cambridge: woodhead publishing, 2011, pp. 301–359.

F. Lin and et al., “Highly efficient photocatalytic oxidation of sulfurcontaining organic compounds and dyes on TiO2 with dual cocatalysts Pt and RuO2,” Applied Catalysis B: Environmental, vol. 127, pp. 363–370, Oct. 2012.

N. M. I. of Japan(NMIJ). Spectral Database for Organic Compounds SDBS. 2014. [Online]. Available: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

R. Campos, A. Kandelbauer, K. H. Robra, A. Cavaco, and G. M. Gübitz, “Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii,” Journal of Biotechnology, vol. 89, no.1-2, pp. 131–139, Aug. 2001.

Descargas

Publicado

2018-09-04

Cómo citar

Gaviria-Arroyave, M. I., Osorio-Echavarría, J., & Gómez-Vanegas, N. A. (2018). Evaluación del escalamiento de un reactor para el tratamiento de efluentes textiles usando Bjerkandera sp. Revista Facultad De Ingeniería Universidad De Antioquia, (88), 80–90. https://doi.org/10.17533/udea.redin.n88a09