Una plataforma integrada para la gestión inteligente de la energía: el proyecto CC-SEM

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20191147

Palabras clave:

ciudades inteligentes, computación en la nube, IoT, 5G, eficiencia energética

Resumen

La gestión energética se centra en mejorar el uso eficiente de los recursos y aumentar el acceso a la energía en camino hacia una sociedad más sostenible. En línea con estos objetivos, el proyecto Cloud Computing for Smart Energy Management (CC-SEM) investiga la construcción de una plataforma integrada para el monitoreo inteligente, el control y la planificación del consumo, y la generación de energía en escenarios urbanos. CC-SEM incluye, en primer lugar, el diseño de un dispositivo IoT de bajo costo capaz de monitorear, operar y controlar electrodomésticos. Éste fue desarrollado con el objetivo de administrar automáticamente el consumo. En segundo lugar, un análisis de la idoneidad de la tecnología celular 5G NB-IoT con respecto al envío de mensajes de restauración y gestión para interrupciones del suministro en redes eléctricas inteligentes. En tercer lugar, un análisis de patrones de consumo doméstico para ayudar a predecir el mismo, utilizando mediciones de la literatura. En cuarto lugar, dentro del contexto de simulaciones de redes eléctricas, una metodología de pronóstico y evaluación de rendimiento para la generación de sistemas fotovoltaicos. CC-SEM presenta avances respecto del control de dispositivos domésticos, planificación/simulación de escenarios de generación de energía, y propone avances en la infraestructura de comunicación de los datos generados.

|Resumen
= 821 veces | PDF (ENGLISH)
= 514 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Emmanuel Luján, Universidad de Buenos Aires

Departamento de Computación. Facultad de Ciencias Exactas y Naturales. Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC-CONICET). 

Alejandro Otero, Universidad de Buenos Aires

Facultad de Ingeniería. Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC-CONICET). 

Esteban Mocskos, Universidad de Buenos Aires

Departamento de Computación. Facultad de Ciencias Exactas y Naturales. Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC-CONICET). 

Sergio Nesmachnow, Universidad de la República

Profesor tiempo completo.

Citas

S. A. Roosa, S. Doty, and W. C. Turner, Energy management handbook , 9th ed. The Fairmont Press, Sep. 2018.

A. Towsend, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia , 1st ed. W. W. Norton & Company, Oct. 2013.

A. Soares, C. Antunes, C. Oliveira, and A. Gomes, “A multi-objective genetic approach to domestic load scheduling in an energy management system,” Energy , vol. 77, pp. 144–152, 2014.

A. Zakariazadeh, S. Jadid, and P. Siano, “Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective mathematical programming approach,” EnergConversManage , vol. 78, pp. 151–164, Feb. 2014.

Y. Wahyuddin, “To what extent the grand lyon metropole can harness the smart meter project towards the governance of territorial climate energy plan (PCET) study case: Smart electric lyon project initiated by EDF [french electric utility company],” in Proc of the International Conference on Public Policy , 2017.

S. Gupta, M. Reynolds, and S. Patel, “Electrisense: Single-point sensing using EMI for electrical event detection and classification in the home,” in Proc of the 12th ACM Int Conf on Ubiquitous Computing . New York, NY, USA: ACM, 2010, pp. 139–148.

A. Spagnolli, N. Corradi, L. Gamberini, E. Hoggan, G. Jacucci, C. Katzeff, L. Broms, and L. Jonsson, “Eco-feedback on the go: Motivating energy awareness,” Computer , vol. 44, no. 5, pp. 38–45, Apr. 2011.

L. Gamberini, A. Spagnolli, N. Corradi, G. Jacucci, G. Tusa, T. Mikkola, L. Zamboni, and E. Hoggan, “Tailoring feedback to users’ actions in a persuasive game for household electricity conservation,” in Persuasive Technology. Design for Health and Safety , ser. Lecture Notes in Computer Science, M. Bang and E. Ragnemalm, Eds., vol. 7284. Berlin, Germany: Springer, 2012, pp. 100–111.

E. Costanza, S. Ramchurn, and N. Jennings, “Understanding domestic energy consumption through interactive visualization: A field study,” in Proc of the 2012 ACM Conf on Ubiquitous Computing . New York, NY, USA: ACM, 2012, pp. 216–225.

C. Chen, S. Duan, T. Cai, B. Liu, and G. Hu, “Smart energy management system for optimal microgrid economic operation,” IETRenewablePowerGeneration , vol. 5, no. 3, pp. 258–267, May 2011.

E. Luján, A. Otero, S. Valenzuela, E. Mocskos, L. A. Steffenel, and S. Nesmachnow, “Cloud computing for smart energy management (CC-SEM project),” in Smart Cities , S. Nesmachnow and L. Hernández Callejo, Eds., vol. 978. Cham: Springer, 2019, pp. 116–131.

J. Rabaey, M. Ammer, J. da Silva, D. Patel, and S. Roundy, “Picoradio supports ad hoc ultra-low power wireless networking,” Computer , vol. 33, no. 7, pp. 42–48, 2000.

A. Whitmore, A. Agarwal, and L. Da Xu, “The internet of things—a survey of topics and trends,” Inform Syst Front , vol. 17, no. 2, pp. 261–274, Apr. 2015.

E. Orsi and S. Nesmachnow, “Iot for smart home energy planning,” in XXIII Congreso Argentino de Ciencias de la Computación , 2017.

E. Orsi and S. Nesmachnow, “Smart home energy planning using IoT and the cloud,” in Proc of the IEEE URUCON . IEEE, Oct. 2017, pp. 1–4.

C. A. Ramírez, R. C. Barragán, G. García-Torales, and V. M. Larios, “Low-power device for wireless sensor network for smart cities,” in Proc of the IEEE MTT-S Latin America Microwave Conference (LAMC) . IEEE, Dec. 2016, pp. 1–3.

Y. P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi, “A primer on 3gpp narrowband internet of things,” IEEE Commun Mag , vol. 55, no. 3, p. 117–123, Mar. 2017.

V. Nair, R. Litjens, and H. Zhang, “Assessment of the suitability of NB-IoT technology for ORM in smart grids,” in Proc of the European Conf on Networks and Communications (EuCNC) . IEEE, Jun. 2018, pp. 418–423.

TSGR, “LTE; E-UTRA; Physical channels and modulation (3GPP TS 36.211 version 14.4.0 Release 14),” ETSI Standard , 2017.

TSGR, “LTE; E-UTRA; Multiplexing and channel coding (3GPP TS 36.212 version 14.4.0 Release 14),” ETSI Standard , 2017.

E. Luján, J. A. Zuloaga Mellino, A. D. Otero, L. Rey Vega, C. G. Galarza, and E. E. Mocskos, “Extreme coverage in 5g narrowband iot: a lut-based strategy to optimize shared channels,” arXiv e-prints , p. arXiv:1908.02798, Aug. 2019.

J. A. Zuloaga Mellino, E. Luján, A. D. Otero, E. E. Mocskos, L. R. Vega, and C. G. Galarza, “Lite NB-IoT Simulator for Uplink Layer,” in 2019 XVIII Workshop on Information Processing and Control (RPIC) , Sep. 2019, pp. 286–291.

E. Luján and J. A. Z. Mellino, “Lite NB-IoT NPUSCH Simulator,” https://github.com/CSC-CONICET/Lite-NBIoT-NPUSCH-Simulator , 2018.

G. Ferrari, P. Medagliani, S. Di Piazza, and M. Martalò, “Wireless sensor networks: Performance analysis in indoor scenarios,” EURASIP Journal on Wireless Communications and Networking , vol. 2007, no. 1, p. 081864, Mar 2007.

P. T. et al., “Que no se corte,” https://www.dc.uba.ar/se-realizo-tecnox-una-competencia-cientifica-innovadora/ , 2018, last access: December 2, 2019.

W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term residential load forecasting based on lstm recurrent neural network,” IEEE T Smart Grid , vol. 10, no. 1, pp. 841–851, Jan. 2019.

K. Amarasinghe, D. L. Marino, and M. Manic, “Deep neural networks for energy load forecasting,” in Proc of the IEEE 26th Int Symp on Industrial Electronics , Jun. 2017, pp. 1483–1488.

D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,” 2018, last access: October 25, 2018. [Online]. Available: http://archive.ics.uci.edu/ml

S. Hong, “Individual household electric power consumption,” 2015, last access: October 25, 2018. [Online]. Available: https://sunhaehong.wordpress.com/2015/08/07

D. L. Marino, K. Amarasinghe, and M. Manic, “Building energy load forecasting using deep neural networks,” in Proc of IECON 2016 - 42nd Annual Conf of the IEEE Industrial Electronics Society . IEEE, Oct. 2016, pp. 7046–7051.

K. Zhou and S. Yang, “Understanding household energy consumption behavior: The contribution of energy big data analytics,” Renew Sust Energ Rev , vol. 56, pp. 810–819, Apr. 2016.

Z. J. Kolter and M. J. Johnson, “Redd: A public data set for energy disaggregation research,” in Proc of the 1st KDD Workshop on Data Mining Applications in Sustainability , 2011.

W. Skamarock, J. Klemp, J. Dudhia, D. Gill, D. Barker, M. Duda, X. Huang, W. Wang, and J. Powers, “A Description of the Advanced Research WRF Version 3,” National Center for Atmospheric Research, Tech. Note NCAR/TN-475+STR, 2008.

N. C. for Atmospheric Research (NCAR), “Weather Research and Forecasting (WRF) Model,” https://www.mmm.ucar.edu/weather-research-and-forecasting-model , 2018, last access: October 25, 2018. [Online]. Available: https://www.mmm.ucar.edu/weather-research-and-forecasting-model

W. F. Holmgren, R. W. Andrews, A. T. Lorenzo, and J. S. Stein, “PVLIB Python 2015,” in Proc of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) . IEEE, Jun. 2015, pp. 1–5.

W. F. Holmgren and D. G. Groenendyk, “An open source solar power forecasting tool using PVLIB-Python,” in Proc of the 2016 IEEE 43rd Photovoltaic Specialists Conference . IEEE, Jun. 2016, pp. 0972–0975.

SAVER-Net Project, http://www.savernet-satreps.org , 2018, last access: October 25, 2018.

N. C. for Environmental Prediction (NCEP), “NCEP Unified Post Processing System (UPP),” https://dtcenter.org/upp/users , 2017, last access: October 25, 2018. [Online]. Available: https://dtcenter.org/upp/users/

D. P. Larson, L. Nonnenmacher, and C. F. Coimbra, “Day-ahead forecasting of solar power output from photovoltaic plants in the american southwest,” Renew Energ , vol. 91, pp. 11 – 20, 2016.

E. L. Maxwell, “A quasi-physical model for converting hourly global horizontal to direct normal insolation,” Solar Energy Research Inst., Golden, CO (USA), Tech. Rep. SERI/TR-215-3087, Aug 1987.

N. C. for Environmental Prediction, “NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids,” https://doi.org/10.5065/D65Q4T4Z , Boulder CO, 2015, last access: October 25, 2018.

Publicado

2020-11-05

Cómo citar

Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, L. A., & Nesmachnow, S. (2020). Una plataforma integrada para la gestión inteligente de la energía: el proyecto CC-SEM. Revista Facultad De Ingeniería Universidad De Antioquia, (97), 41–55. https://doi.org/10.17533/udea.redin.20191147