Especiación de hierro, níquel y cobalto en la biodegradación anaerobia de la paja de arroz
DOI:
https://doi.org/10.17533/udea.redin.20200366Palabras clave:
biogás, metales, mineral, rendimiento, tratamiento de residuosResumen
Se investigó la biodisponibilidad de Fe, Ni y Co y su impacto en la monodigestión de la paja de arroz con la adición de una fuente natural de nutrientes. La distribución de las formas de enlace de Fe, Ni y Co y su potencial de biodisponibilidad se evaluó en dos reactores durante 311 días de experimentación a 37°C. En el reactor R2 se suministró una dosis de mineral de 1 g L-1 una vez por semana. El reactor control (R1) estuvo limitado de mineral durante el estudio. El mayor rendimiento de metano de 238 mL/g SV se obtuvo con el suministro de mineral, con un incremento de 45% respecto al reactor sin metales (164 mL/g VS). La extracción secuencial confirmó que el 70%, 88% y 75% de Fe, Ni y Co estuvieron principalmente en formas biodisponibles, intercambiables y carbonato, respectivamente, cuando se adicionó el mineral en R2. En R1, el Fe y Co estuvieron principalmente asociados a las fracciones de carbonatos y materia orgánica-sulfuro (43% y 41%), respectivamente, siendo las concentraciones de Ni no detectadas durante la experimentación. Como resultado, el rendimiento de metano en R2 incrementó en un 45%, con un potencial de biodisponibilidad (Ni > Co > Fe) mayor en comparación con el reactor control (Co > Fe). La limitación de metales en R1 condujo al agotamiento de las fracciones biodisponibles, con un impacto negativo en la comunidad metanogénica.
Descargas
Citas
C. Sawatdeenarunat, K. Surendra, D. Takara, H. Oechsner, and S. Khanal, “Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities,” Bioresource Technology, vol. 178, february 2015. [Online]. Available: https://doi.org/10.1016/j.biortech.2014.09.103
I. Nges, B. Wang, Z. Cui, and J. Liu, “Digestate liquor recycle in minimal nutrients-supplemented anaerobic digestion of wheat straw,” Biochemical Engineering Journal, vol. 94, february 15 2015. [Online]. Available: https://doi.org/10.1016/j.bej.2014.11.023
T. Schmidt, M. Nelles, F. Scholwin, and J. Pröter, “Trace element supplementation in the biogas production from wheat stillage – optimization of metal dosing,” Bioresource Technology, vol. 168, september 2014. [Online]. Available: https://doi.org/10.1016/j.biortech.2014.02.124
W. Zhang, L. Zhang, and A. Li, “Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability,” Water Research, vol. 84, november 1 2015. [Online]. Available: https://doi.org/10.1016/j.watres.2015.07.010
F. Fermoso, J. Bartacek, S. Jansen, and P. Lens, “Metal supplementation to uasb bioreactors: from cell-metal interactions to full-scale application,” Science of The Total Environment, vol. 407, june 1 2009. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2008.10.043
Z. Lei, J. Chen, Z. Zhang, and N. Sugiura, “Methane production from rice straw with acclimated anaerobic sludge: Effect of phosphate supplementation,” Bioresource Technology, vol. 101, no. 12, june 2010. [Online]. Available: https://doi.org/10.1016/j.biortech.2010.01.083
K. Khatri and et al, “Synergistic effect of alkaline pretreatment and fe dosing on batch anaerobic digestion of maize straw,” Applied Energy, vol. 158, november 15 2015. [Online]. Available: https://doi.org/10.1016/j.apenergy.2015.08.045
W. Zhong and et al, “Effect of biological pretreatments in enhancing corn straw biogas production,” Bioresource Technology, vol. 102, no. 24, december 2011. [Online]. Available: https://doi.org/10.1016/j.biortech.2011.09.077
K. Pilarski and et al, “The impact of extrusion on the biogas and biomethane yield of plant substrates,” Journal of Ecological Engineering, vol. 17, no. 4, september 2016. [Online]. Available: https://doi.org/10.12911/22998993/64563
B. Evranos and B. Demirel, “The impact of Ni, Co and Mo supplementation on methane yield from anaerobic mono-digestion of maize silage,” enviromental technology, vol. 36, no. 9-12, mayjune 2016. [Online]. Available: https://doi.org/10.1080/09593330.2014.997297
H. Pobeheim, B. Munk, H.Lindorfer, and G. Guebitz, “Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage,” Water Research, vol. 45, no. 2, january 2011. [Online]. Available: https://doi.org/10.1016/j.watres.2010.09.001
A. Suárez, K. Nielsen, S. Köhler, D. MerencioIII, and I. Reyes, “Enhancement of anaerobic digestion of microcrystalline cellulose (mcc) using natural micronutrient sources,” Brazilian Journal of Chemical Engineering, vol. 31, no. 2, april/june 2014. [Online]. Available: http://dx.doi.org/10.1590/0104-6632.20140312s00002689
A. González and et al, “Effect of natural mineral on methane production and process stability during semi-continuous monodigestion of maize straw,” Applied Biochemistry and Biotechnology, vol. 178, no. 8, april 2016. [Online]. Available: http://dx.doi.org/10.1007/s12010-015-1965-8
Fermentation of organic materials - Characterization of the substrate, sampling, collection of material data, fermentation tests, VDI, 2016.
A. González, I. Pereda, D. Oliva, T. Suárez, A. da Silva, and M. Zaiat, “Bioavailability and dosing strategies of mineral in anaerobic monodigestion of maize straw,” Engineering in Life Sciences, vol. 18, no. 8, august 2018. [Online]. Available: https: //doi.org/10.1002/elsc.201700018
M. Begoña, E. van, M. Zandvoorta, J. Izab, and P. Lens, “Effect of cobalt sorption on metal fractionation in anaerobic granular sludge,” Journal of Environmental Quality Abstract, vol. 33, no. 4, july-august 2004. [Online]. Available: https://doi.org/10.2134/jeq2004.1256
A. Tessier, P. Campbell, and M. Bisson, “Sequential extraction procedure for the speciation of particulate trace metals,” Analytical Chemistry, vol. 51, no. 7, june 1 1979. [Online]. Available: https://doi.org/10.1021/ac50043a017
L. H. and et al, “The valuation of malnutrition in the monodigestion of maize silage by anaerobic batch tests,” Water Science and Technology, vol. 58, no. 7, october 2008. [Online]. Available: https://doi.org/10.2166/wst.2008.491
C. L. and et al, “Improving biomethane production and mass bioconversion of corn stover anaerobic digestion by adding naoh pretreatment and trace elements,” Journal of Biomedicine and Biotechnology, vol. 2015, no. 13, july 2015. [Online]. Available: https://doi.org/10.1155/2015/125241
M. Ortner, M. Ramedera, L. Rachbauer, G. Bochmann, and W. Fuchs, “Bioavailability of essential trace elements and their impact on anaerobic digestion of slaughterhouse waste,” Biochemical Engineering Journal, vol. 99, july 15 2015. [Online]. Available: https://doi.org/10.1016/j.bej.2015.03.021
J. Moestedt and et al, “Effects of trace element addition on process stability during anaerobic co-digestion of ofmsw and slaughterhouse waste,” Waste Management, vol. 47, no. Part A, january 2016. [Online]. Available: https://doi.org/10.1016/j.wasman.2015.03.007
B. Demirel and P.Scherer, “Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane,” Biomass and Bioenergy, vol. 35, no. 3, march 2011. [Online]. Available: https://doi.org/10.1016/j.biombioe.2010.12.022
W. Mussoline, G. Espositoa, P. Lens, A. Spagnic, and A. Giordano, “Enhanced methane production from rice straw co-digested with anaerobic sludge from pulp and paper mill treatment process,” Bioresource Technology, vol. 148, november 2013. [Online]. Available: https://doi.org/10.1016/j.biortech.2013.08.107
S. Menardo, V. Cacciatore, and P. Balsari, “Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion”, Bioresource Technology, vol. 180, march 2015. [Online]. Available: http://dx.doi.org/10.1016/j.biortech.2014.12.104
R. Zhao and et al., “Methane production from rice straw pretreated by a mixture of acetic–propionic acid”, Bioresource Technology, vol. 101, no. 3, February 2010. [Online]. Available: http://dx.doi.org/10.1016/j.biortech.2009.09.020
L. M. Contreras, H. Schelle, C. Sebrango, and I. Pereda, “Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process”, Water Science and Technology, vol. 65, no. 6, march 2012. [Online]. Available: http://dx.doi.org/10.2166/wst.2012.951
V. Facchin and et al, “Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculums origin”, Biochemistry Engineering Journal, vol. 70, january 15 2013. [Online]. Available: http://dx.doi.org/10.1016/j.bej.2012.10.004
M. H. Zandvoort, E. D. Van Hullebusch, F. Fermoso, and P. N. Lens, “Trace metals in anaerobic granular sludge reactors: Bioavailability and dosing strategies”, Engineering Life in Science, vol. 6 no. 3, june 2006. [Online]. Available: http://dx.doi.org/10.1002/elsc.200620129
A. Van der Veen, F. Fermoso, and P. N. Lens, “Bonding form analysis of metals and sulphur fractionation in methanol-grown anaerobic granular sludge”, Engineering in Life Sciences, vol. 7, no. 5, october 2007. [Online]. Available: http://dx.doi.org/10.1002/elsc.200720208
J. Gustavsson, S. Yekta, A. Karlsson, U. Skyllberg, and B. Svensson, “Potential bioavailability and chemical forms of Co and Ni in the biogas process - An evaluation based on sequential and acid volatile sulfide extractions”, Engineering in Life Sciences, vol. 13, no. 6, november 2013. [Online]. Available: http://dx.doi.org/10.1002/elsc.201200162
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Facultad de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.