Biomass gasification under external heating and using steam as a gasifying agent: Numerical analysis
DOI:
https://doi.org/10.17533/udea.redin.20200475Keywords:
renewable resources, biomass energy, syngas, hydrogenAbstract
Gasification using an external heat source is considered as a high potential alternative to take high moisture content biomass into a fuel gas. This gas could reach energy densities close to 12 MJ/Nm3, which allows its use as a fuel in conventional thermal machines or as a precursor for higher fuel gases. Given this, in the present work allothermal gasification for a 50 %w.t. moisture content biomass was analyzed computationally aiming to yield a high hydrogen content syngas. Using a power supply of 8 kW, the dry tar-free gas yield was around 51.9 mol/kg of biomass with an average concentration of 45.7% CO, 44.8% H2, 4.8% CH4 and 4.6% CO2. A peak temperature of 1,070 K and 33% for chemical efficiency were achieved. In spite of using homogeneous heating along the reactor wall, the process temperature decreases near the gas outlet. This is due to solid material depletion decreasing the process thermal inertia. During the final stages, H2 and CO concentration also record an increase due to the endothermic carbon gasification as well as water-gas shift and methanation reactions.
Downloads
References
International Renewable Energy Agency (IRENA), “Rethinking energy,” IRENA, Abu Dhabi, United Arab Emirates, Tech. Rep., 2017.
S. Ladanai and J. Vinterbäck, “Global potential of sustainable biomass for energy,” Institutionen För Energi Och Tek, Uppsala, Sweden, Tech. Rep. 013, 2009.
Energía de la biomasa, Instituto para la Diversificación y Ahorro de la Energía, Madrid, España, 2007.
D. A. Quintero, Y. A. Lenis, and L. A. Corredor, “Desarrollo de un modelo de gasificación en equilibrio químico para evaluar el potencial energético del cuesco en plantas extractoras de aceite de palma en colombia,” INGE CUC, vol. 14, no. 2, July 2018. [Online]. Available: https://doi.org/10.17981/ingecuc.14.2.2018.06
J. F. Perez, Y. Lenis, S. Rojas, and C. León, “Generación distribuida mediante gasificación de biomasa: un análisis técnico - económico e implicaciones por reducción de emisiones de CO2,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 62, pp. 157–169, Jan. 2012.
A. Z’Graggen and A. Steinfeld, “Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy – v. reactor modeling, optimization, and scale-up,” Int. J. Hydrogen Energy, vol. 33, no. 20, October 2008. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2008.07.047
L. Suárez, J. F. Pérez, and R. Barrera, “Gasificación de madera para la obtención de un syngas útil en la producción de biocombustibles y/o productos químicos,” Rev. Ion, vol. 30, no. 1, June 30 2017. [Online]. Available: https://doi.org/10.18273/revion.v30n1-2017005
G. Cheng and et al., “Allothermal gasification of biomass using micron size biomass as external heat source,” Bioresour. Technol., vol. 107, March 2012. [Online]. Available: https://doi.org/10.1016/j.biortech.2011.12.074
L. E. García, “Obtención de gas combustible a partir de la gasificación de biomasa en un reactor de lecho fijo,” M.S. thesis, Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá D.C., Colombia, 2011.
H. J. Garcia, “Modelación de la gasificación de biomasa en un reactor de lecho fijo,” M.S. thesis, Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá D.C., Colombia, 2011.
C. M. van der Meijden, A. van der Drift, and B. J. Vreugdenhil, “Benefits of allothermal biomass gasification for co-firing,” in 2nd Workshop on Cofiring Biomass with Coa, Copenhagen, Denmark, 2012, pp. 27–28.
H. Hofbauer, R. Rauch, K. Bosch, R. Koch, and C. Aichernig, “Biomass CHP plant gussing - a success story,” in Pyrolysis and gasification of biomass and waste: proceedings of an expert meeting, Strasbourg, France, 2002, pp. 527–536.
M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci., vol. 5, no. 11, April 05 2012. [Online]. Available: https://doi.org/10.1039/C2EE21275G
Y. Kalinci, A. Hepbasli, and I. Dincer, “Performance assessment of hydrogen production from a solar-assisted biomass gasification system,” Int. J. Hydrogen Energy, vol. 38, no. 14, May 2013. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2013.01.109
Universidad Industrial de Santander. (2011) Atlas del potencial energético de la biomasa residual en colombia. [Online]. Available: https://bit.ly/2SAxJSH
Y. A. Lenis, G. Maag, C. E. Lins, L. Corredor, and M. Sanjuan, “Effect of heat flux distribution profile on hydrogen concentration in an allothermal downdraft biomass gasification process: Modeling study,” J. Energy Resour. Technol., vol. 141, no. 3, March 2019. [Online]. Available: https://doi.org/10.1115/1.4041723
A. Gómez, W. Klose, S. L. Rincón, and W. Wiest, “Transformación termoquímica de la biomasaresidual del proceso de extracción del aceite de palma: tecnologías y perspectivas,” Palmas, vol. 25, pp. 388–397, 2004.
J. F. Pérez, Gasificación de biomasa: Estudios teórico experimentales en lecho fijo equicorriente. Medellín, Colombia: Universidad de Antioquia, 2009.
J. Porteiro, “Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor,” Fuel, vol. 89, no. 1, January 2010. [Online]. Available: https://doi.org/10.1016/j.fuel.2009.01.024
Y. A. Lenis and J. F. Pérez, “Gasification of sawdust and wood chips in a fixed bed under autothermal and stable conditions,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 36, no. 23, November 11 2014. [Online]. Available: https://doi.org/10.1080/15567036.2013.875081
C. D. Blasi and C. Branca, “Modeling a stratified downdraft wood gasifier with primary and secondary air entry,” Fuel, vol. 104, February 2013. [Online]. Available: https://doi.org/10.1016/j.fuel.2012.10.014
O. Yucel and M. A. Hastaoglu, “Kinetic modeling and simulation of throated downdraft gasifier,” Fuel Process. Technol., vol. 144, April 2016. [Online]. Available: https://doi.org/10.1016/j.fuproc.2015.12.023
A. Steinfeld, “Solar thermochemical production of hydrogen––a review,” Sol. Energy, vol. 78, no. 5, May 2005. [Online]. Available: https://doi.org/10.1016/j.solener.2003.12.012
M. Kruesi, Z. R. Jovanovic, E. C. dos Santos, H. C. Yoon, and A. Steinfeld, “Solar-driven steam-based gasification of sugarcane bagasse in a combined drop-tube and fixed-bed reactor – thermodynamic, kinetic, and experimental analyses,” Biomass and Bioenergy, vol. 52, May 2013. [Online]. Available: https://doi.org/10.1016/j.biombioe.2013.03.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.