Simulación de la producción de metanol usando biomasas residuales en un reactor empacado de Cu/ZnO/Al2O3
DOI:
https://doi.org/10.17533/udea.redin.20200907Palabras clave:
metanol, SYNGAS, catalizador, simulaciónResumen
El objetivo de este artículo es simular un algoritmo construido en MATLAB para representar la conversión catalítica de SYNGAS en metanol en un reactor de lecho empaquetado, basados en la cinética química para un sistema heterogéneo con un Cu/ZnO/Al2O3 como catalizador, y en modelos matemáticos y fenomenológicos, como caída de presión y desactivación del catalizador. Se realiza una validación del modelo, comparando los resultados de referencia y los resultados obtenidos al ejecutar en el algoritmo MATLAB la composición de referencia SYNGAS. Además, el modelo construido considera una desactivación del catalizador por sinterización y caída de presión a lo largo del reactor. Se evaluaron varios parámetros para identificar las condiciones para la producción de alcohol metílico; Estos parámetros incluyen la selección del agente gasificante, el efecto de la relación de biomasa y vapor y el origen de la biomasa.
Descargas
Citas
G. Bozzano and F. Manenti, “Efficient methanol synthesis: Perspectives, technologies and optimization strategies,” Prog. Energy Combust. Sci., vol. 56, September 2016. [Online]. Available: https://doi.org/10.1016/j.pecs.2016.06.001
H. W. Cooper, “Producing electricity and chemicals simultaneously,” Chem. Eng. Prog., vol. 106, no. 2, pp. 24–32, Feb. 2010.
A. E. Duarte, W. A. Sarache, and C. A. Cardona, “Cost analysis of the location of Colombian biofuels plants,” DYNA, vol. 79, no. 176, pp. 71–80, 2012.
S. Leduc, J. Lundgren, O. Franklin, and E. Dotzauer, “Location of a biomass based methanol production plant: A dynamic problem in northern Sweden,” Appl. Energy, vol. 87, no. 1, January 2010. [Online]. Available: https://doi.org/10.1016/j.apenergy.2009.02.009
C. N. Hamelinck and A. P. C. Faaij, “Future prospects for production of methanol and hydrogen from biomass,” Journal of Power Sources, vol. 111, no. 1, September 18 2002. [Online]. Available: https://doi.org/10.1016/S0378-7753(02)00220-3
R. Rauch, J. Hrbek, and H. Hofbauer, “Biomass gasification for synthesis gas production and applications of the syngas,” Wiley Interdiscip. Rev. Energy Environ., vol. 3, no. 4, July 2014. [Online]. Available: https://doi.org/10.1002/wene.97
K. M. Holmgren, T. Berntsson, E. Andersson, and T. Rydberg, “System aspects of biomass gasification with methanol synthesis – process concepts and energy analysis,” Energy, vol. 45, no. 1, September 2012. [Online]. Available: https://doi.org/10.1016/j.energy.2012.07.009
A. Bansode and A. Urakawa, “Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products,” Journal of Catalysis, vol. 309, January 2014. [Online]. Available: https://doi.org/10.1016/j.jcat.2013.09.005
D. H. Meadows, Los límites del crecimiento: informe al Club de Roma sobre el predicamento de la humanidad. Ciudad de México, México: Fondo de Cultura Económica, 1972.
T. Damartzis and A. Zabaniotou, “Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review,” Renew. Sustain. Energy Rev., vol. 15, no. 1, January 2011. [Online]. Available: https://doi.org/10.1016/j.rser.2010.08.003
P. Gangadharan, A. Zanwar, K. Zheng, J. Gossage, and H. H. Lou, “Sustainability assessment of polygeneration processes based on syngas derived from coal and natural gas,” Comput. Chem. Eng., vol. 39, April 06 2012. [Online]. Available: https://doi.org/10.1016/j.compchemeng.2011.10.006
J. H. Clark, “Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass,” J. Chem. Technol. Biotechnol., vol. 82, no. 7, July 2007. [Online]. Available: https://doi.org/10.1002/jctb.1710
Z. Ravaghi and F. Manenti, “Unified modeling and feasibility study of novel green pathway of biomass to methanol/dimethylether,” Appl. Energy, vol. 145, May 01 2015. [Online]. Available: https://doi.org/10.1016/j.apenergy.2015.02.019
N. L. Panwar, R. Kothari, and V. V. Tyagi, “Thermo chemical conversion of biomass – eco friendly energy routes,” Renew. Sustain. Energy Rev., vol. 16, no. 4, May 2012. [Online]. Available: https://doi.org/10.1016/j.rser.2012.01.024
A. Narvaez, D. Chadwick, and L. Kershenbaum, “Small-medium scale polygeneration systems: Methanol and power production,” Appl. Energy, vol. 113, January 2014. [Online]. Available: https://doi.org/10.1016/j.apenergy.2013.08.065
A. Riaz, G. Zahedi, and J. J. Klemeš, “A review of cleaner production methods for the manufacture of methanol,” J. Clean. Prod., vol. 57, October 15 2013. [Online]. Available: https://doi.org/10.1016/j.jclepro.2013.06.017
K. M. Vanden and G. F. Froment, “A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst,” J. Catal., vol. 161, no. 1, June 1996. [Online]. Available: https://doi.org/10.1006/jcat.1996.0156
F. Manenti, F. Adani, F. Rossi, G. Bozzano, and C. Pirola, “Firstprinciples models and sensitivity analysis for the lignocellulosic biomass-to-methanol conversion process,” Comput. Chem. Eng., vol. 84, January 04 2016. [Online]. Available: https://doi.org/10.1016/j.compchemeng.2015.05.01
S. Yusup, N. Phuong, and H. Zabiri, “A simulation study of an industrial methanol reactor based on simplified steady-state model,” Int. J. Res. Rev. Appl. Sci., vol. 5, no. 3, pp. 213–222, Dec. 2010.
N. Couto, A. Rouboa, V. Silva, E. Monteiro, and K. Bouziane, “Influence of the biomass gasification processes on the final composition of syngas,” Energy Procedia, vol. 36, 2013. [Online]. Available: https://doi.org/10.1016/j.egypro.2013.07.068
F. Manenti, S. Cieri, and M. Restelli, “Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor,” Chem. Eng. Sci., vol. 66, no. 2, January 15 2011. [Online]. Available: https://doi.org/10.1016/j.ces.2010.09.036
H. S. Fogler, Elementos de ingeniería de las reacciones químicas. Madrid, Spain: Pearson Educación, 2001.
O. Levenspiel, Ingeniería de las reacciones químicas, 1st ed. Barcelona, España: Editorial Reverté, S.A, 2005.
M. Iborra, J. Tejero, and F. Cunill. (2013) Reactores multifásicos. [Online]. Available: http://diposit.ub.edu/dspace/bitstream/2445/33262/1/APUNTES%20RM.pdf
T. R. Pacioni and et al., “Bio-syngas production from agroindustrial biomass residues by steam gasification,” Waste Manag., vol. 58, December 2016. [Online]. Available: https://doi.org/10.1016/j.wasman.2016.08.021
M. Prakash, A. Sarkar, J. Sarkar, S. S. Mondal, and J. P. Chakraborty, “Proposal and design of a new biomass based syngas production system integrated with combined heat and power generation,” Energy, vol. 133, August 15 2017. [Online]. Available: https://doi.org/10.1016/j.energy.2017.05.161
A. Sarmiento, D. Maya, F. Chejne, and E. Lora, “Gasification of agroindustrial wastes for electricity cogeneration,” in ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Quebec, Canada, 2015, pp. 1–7.
S. Ramirez, F. E. Sierra, and C. A. Guerrero, “Gasification from waste organic materials,” Ing. e Investig., vol. 31, no. 3, pp. 17–25, Sep. 2011.
R. Rodrigues, A. R. Muniz, and N. R. Marcilio, “Evaluation of biomass and coal co-gasification of brazilian feedstock using a chemical equilibrium model,” Brazilian J. Chem. Eng., vol. 33, no. 2, April 2016. [Online]. Available: https://doi.org/10.1590/0104-6632.20160332s00003479
L. E. García, “Obtención de gas combustible a partir de la gasificación de biomasa en un reactor de lecho fijo,” M.S. thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011.
K. Ibsen, “Equipment design and cost estimation for small modular biomass systems , synthesis gas cleanup , and oxygen separation equipment task 2 : Gas cleanup design and cost equipment design and cost estimation for small modular biomass systems , synthesis gas cl,” National Renewable Energy Laboratory, San Francisco, CA, USA, Tech. Rep. NREL/SR-510-39945, May 2006.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.