Simulation of methanol production from residual biomasses in a Cu/ZnO/Al2O3 packed bed reactor




methanol, SYNGAS, catalyst, simulation


This article aims to simulate an algorithm constructed in MATLAB to represent the catalytic conversion of SYNGAS into methanol in a packed-bed reactor, based on chemical kinetics for a heterogeneous system with a Cu/ZnO/Al2O3 as a catalyst, and complementary math and phenomenological models, as a pressure drop and catalyst deactivation. Model validation is developed, comparing reference results and the results by running the algorithm in MATLAB using a reference SYNGAS composition. Also, the constructed model considers a catalyst deactivation by sintering and pressure drop along the reactor. Several parameters were evaluated to identify the pro conditions for methyl alcohol production; these parameters include the gasifying agent selection, the biomass and steam ratio effect, and the biomass origin.

= 1363 veces | PDF
= 689 veces|


Download data is not yet available.

Author Biographies

Carlos Esteban Aristizabal Alzate, Metropolitan Technological Institute

M.Sc in Industrial Energy Manegement, Faculty of Engineering. Research Group in Advanced Materials and Energy, MATYER.

Pedro Nel Alvarado Torres, Metropolitan Technological Institute

Professor. Research Group in Advanced Materials and Energy, MATYER.

Andrés Felipe Vargas Ramírez, Metropolitan Technological Institute

Associate Professor. Research Group in Advanced Materials and Energy, MATYER.


G. Bozzano and F. Manenti, “Efficient methanol synthesis: Perspectives, technologies and optimization strategies,” Prog. Energy Combust. Sci., vol. 56, September 2016. [Online]. Available:

H. W. Cooper, “Producing electricity and chemicals simultaneously,” Chem. Eng. Prog., vol. 106, no. 2, pp. 24–32, Feb. 2010.

A. E. Duarte, W. A. Sarache, and C. A. Cardona, “Cost analysis of the location of Colombian biofuels plants,” DYNA, vol. 79, no. 176, pp. 71–80, 2012.

S. Leduc, J. Lundgren, O. Franklin, and E. Dotzauer, “Location of a biomass based methanol production plant: A dynamic problem in northern Sweden,” Appl. Energy, vol. 87, no. 1, January 2010. [Online]. Available:

C. N. Hamelinck and A. P. C. Faaij, “Future prospects for production of methanol and hydrogen from biomass,” Journal of Power Sources, vol. 111, no. 1, September 18 2002. [Online]. Available:

R. Rauch, J. Hrbek, and H. Hofbauer, “Biomass gasification for synthesis gas production and applications of the syngas,” Wiley Interdiscip. Rev. Energy Environ., vol. 3, no. 4, July 2014. [Online]. Available:

K. M. Holmgren, T. Berntsson, E. Andersson, and T. Rydberg, “System aspects of biomass gasification with methanol synthesis – process concepts and energy analysis,” Energy, vol. 45, no. 1, September 2012. [Online]. Available:

A. Bansode and A. Urakawa, “Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products,” Journal of Catalysis, vol. 309, January 2014. [Online]. Available:

D. H. Meadows, Los límites del crecimiento: informe al Club de Roma sobre el predicamento de la humanidad. Ciudad de México, México: Fondo de Cultura Económica, 1972.

T. Damartzis and A. Zabaniotou, “Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review,” Renew. Sustain. Energy Rev., vol. 15, no. 1, January 2011. [Online]. Available:

P. Gangadharan, A. Zanwar, K. Zheng, J. Gossage, and H. H. Lou, “Sustainability assessment of polygeneration processes based on syngas derived from coal and natural gas,” Comput. Chem. Eng., vol. 39, April 06 2012. [Online]. Available:

J. H. Clark, “Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass,” J. Chem. Technol. Biotechnol., vol. 82, no. 7, July 2007. [Online]. Available:

Z. Ravaghi and F. Manenti, “Unified modeling and feasibility study of novel green pathway of biomass to methanol/dimethylether,” Appl. Energy, vol. 145, May 01 2015. [Online]. Available:

N. L. Panwar, R. Kothari, and V. V. Tyagi, “Thermo chemical conversion of biomass – eco friendly energy routes,” Renew. Sustain. Energy Rev., vol. 16, no. 4, May 2012. [Online]. Available:

A. Narvaez, D. Chadwick, and L. Kershenbaum, “Small-medium scale polygeneration systems: Methanol and power production,” Appl. Energy, vol. 113, January 2014. [Online]. Available:

A. Riaz, G. Zahedi, and J. J. Klemeš, “A review of cleaner production methods for the manufacture of methanol,” J. Clean. Prod., vol. 57, October 15 2013. [Online]. Available:

K. M. Vanden and G. F. Froment, “A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst,” J. Catal., vol. 161, no. 1, June 1996. [Online]. Available:

F. Manenti, F. Adani, F. Rossi, G. Bozzano, and C. Pirola, “Firstprinciples models and sensitivity analysis for the lignocellulosic biomass-to-methanol conversion process,” Comput. Chem. Eng., vol. 84, January 04 2016. [Online]. Available:

S. Yusup, N. Phuong, and H. Zabiri, “A simulation study of an industrial methanol reactor based on simplified steady-state model,” Int. J. Res. Rev. Appl. Sci., vol. 5, no. 3, pp. 213–222, Dec. 2010.

N. Couto, A. Rouboa, V. Silva, E. Monteiro, and K. Bouziane, “Influence of the biomass gasification processes on the final composition of syngas,” Energy Procedia, vol. 36, 2013. [Online]. Available:

F. Manenti, S. Cieri, and M. Restelli, “Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor,” Chem. Eng. Sci., vol. 66, no. 2, January 15 2011. [Online]. Available:

H. S. Fogler, Elementos de ingeniería de las reacciones químicas. Madrid, Spain: Pearson Educación, 2001.

O. Levenspiel, Ingeniería de las reacciones químicas, 1st ed. Barcelona, España: Editorial Reverté, S.A, 2005.

M. Iborra, J. Tejero, and F. Cunill. (2013) Reactores multifásicos. [Online]. Available:

T. R. Pacioni and et al., “Bio-syngas production from agroindustrial biomass residues by steam gasification,” Waste Manag., vol. 58, December 2016. [Online]. Available:

M. Prakash, A. Sarkar, J. Sarkar, S. S. Mondal, and J. P. Chakraborty, “Proposal and design of a new biomass based syngas production system integrated with combined heat and power generation,” Energy, vol. 133, August 15 2017. [Online]. Available:

A. Sarmiento, D. Maya, F. Chejne, and E. Lora, “Gasification of agroindustrial wastes for electricity cogeneration,” in ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Quebec, Canada, 2015, pp. 1–7.

S. Ramirez, F. E. Sierra, and C. A. Guerrero, “Gasification from waste organic materials,” Ing. e Investig., vol. 31, no. 3, pp. 17–25, Sep. 2011.

R. Rodrigues, A. R. Muniz, and N. R. Marcilio, “Evaluation of biomass and coal co-gasification of brazilian feedstock using a chemical equilibrium model,” Brazilian J. Chem. Eng., vol. 33, no. 2, April 2016. [Online]. Available:

L. E. García, “Obtención de gas combustible a partir de la gasificación de biomasa en un reactor de lecho fijo,” M.S. thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011.

K. Ibsen, “Equipment design and cost estimation for small modular biomass systems , synthesis gas cleanup , and oxygen separation equipment task 2 : Gas cleanup design and cost equipment design and cost estimation for small modular biomass systems , synthesis gas cl,” National Renewable Energy Laboratory, San Francisco, CA, USA, Tech. Rep. NREL/SR-510-39945, May 2006.




How to Cite

Aristizabal Alzate, C. E., Alvarado Torres, P. N., & Vargas Ramírez, A. F. (2020). Simulation of methanol production from residual biomasses in a Cu/ZnO/Al2O3 packed bed reactor . Revista Facultad De Ingeniería Universidad De Antioquia, (102), 115–124.