A kinetic study of the photoinduced oxo-transfer using a Mo complex anchored to TiO2

Keywords: Photonic flux, selective photooxidation, dioxomolybdenum complex, quantum yield


Kinetic study of the photo-assisted oxygen atom transfer reaction (OAT) using a dioxo-Mo complex anchored on TiO2, stimulated by light, was performed at ambient conditions using triphenylphosphine (PPh3) as a model molecule. The kinetic of the OAT reaction was studied with three catalytic systems: 4,4’-dicarboxylate-2,2’-bipyridine-dioxochloromolybdenum (MoO2L/TiO2), H2MoO4 (H2MoO4/TiO2) and molybdenum oxide (MoO3/ TiO2) anchored to TiO2. The MoO2L/TiO2 gives conversion higher than 90% and selectivity (to phosphine oxide) close to 100%. MoO3/TiO2 did not allow the oxo-transference, suggesting the importance of the bipyridine ligand as an electronic connector between MoO2L unit and TiO2. With the MoO2L/TiO2 system was observed that when the photonic flux increases, the quantum yield, and the OAT reaction rate increases.

= 155 veces | PDF
= 148 veces|


Download data is not yet available.

Author Biographies

Julián Eduardo Sánchez-Velandia, Universidad Industrial de Santander

Centro de Investigación en Catálisis, Escuela de Química, Facultad de Ciencias

Edgar Alberto Páez-Mozo, Universidad Industrial de Santander

Centro de Investigación en Catálisis, Escuela de Química, Facultad de Ciencias

Fernando Martínez-Ortega, Universidad Industrial de Santander

Centro de Investigación en Catálisis, Escuela de Química, Facultad de Ciencias. Profesor


Z. Guo and et al., “Recent advances in heterogeneous selectiveoxidation catalysis for sustainable chemistry,” Chemical Society Reviews, vol. 43, pp. 3480–3524, 2014.

R. Neumann and A. Khenkin, “Molecular oxygen and oxidation catalysis by phosphovanadomolybdates,” Chemical Communications, vol. 24, pp. 2529–2538, Mar. 2006.

S. Gosh and et al., “Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen,” ACS Catalysis, vol. 4, no. 7, June 3 2014. [Online]. Available: https://doi.org/10.1021/cs5004454

N. J. Castellanos, “Síntesis, caracterización y evaluación de la actividad foto catalítica de los complejos 1,10-fenantrolina-dibromo-dioxo-molibdeno(VI) y 1,10-fenantrolina-dicloro-dioxo-molibdeno (VI),” Undergraduate, Universidad Industrial de Santander, Bucaramanga, Colombia, 2005.

N. J. Castellanos, “Estudio del efecto de ligandos N-heterocíclicos insaturados en la oxo-transferencia foto-inducida con complejos del tipo MoO2Cl2Ln/TiO2,” Ph.D. Dissertation, Universidad Industrial de Santander, Bucaramanga, Colombia, 2011.

H. Arzoumanian, N. J. Castellanos, F. O. Martínez, E. O. Páez, and F. Ziarelli, “Silicon-assisted direct covalent grafting on metal oxide surfaces: Synthesis and characterization of carboxylate N,N’-Ligands on TiO2,” European Journal of Inorganic Chemistry, vol. 2010, no. 11, March 31 2010. [Online]. Available: https://doi.org/10.1002/ejic.200901092

H. Arzoumanian, “Molybdenum-oxo and peroxo complexes in oxygen atom transfer processes with O2 as the primary oxidant,” Current Inorganic Chemistry, vol. 1, no. 2, 2011. [Online]. Available: https://doi.org/10.2174/1877944111101020140

J. Kim, N. Ichikuni, T. Hara, and S. Shimazu, “Study on the selectivity of propane photo-oxidation reaction on SBA-15 supported Mo oxide catalyst,” Catalysis Today, vol. 265, May 1 2016. [Online]. Available: https://doi.org/10.1016/j.cattod.2015.09.043

R. A. Salamony, H. M. Gobara, and S. A. Younis, “Potential application of MoO3 loaded SBA-15 photo-catalyst for removal of multiple organic pollutants from water environment,” Journal of water process Engineering, vol. 18, August 2017. [Online]. Available: https://doi.org/10.1016/j.jwpe.2017.06.010

P. Basu, B. W. Kail, and C. G. Young, “The influence of the oxygen atom acceptor on the reaction coordinate and mechanism of oxygen atom transfer from the dioxo-Mo(VI) complex, TpiprMoO2(OPh), to tertiary phosphines,” Inorganic Chemistry, vol. 49, no. 11, 2010. [Online]. Available: https://doi.org/10.1021/ic902500h

J. M. Tunney, J. McMaster, and C. D. Garner, “Molybdenum and tungsten enzymes,” in Comprehensive Coordination Chemistry II, J. A. McCleverty and T. J. Meyer, Eds. New York, USA: Elsevier Ltd, 2003, pp. 459–477.

H. Martínez and et al., “Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4’-dicarboxylato-2,2’-bipyridine) molybdenum(VI) grafted on mesoporous TiO2,” Journal of Molecular Catalysis A: Chemical, vol. 423, November 2016. [Online]. Available: https://doi.org/10.1016/j.molcata.2016.07.006

H. Martínez, . A. Amaya, E. A. Páez, and F. Martínez, “Highly efficient epoxidation of α-pinene with O2 photocatalyzed by dioxoMo(VI) complex anchored on TiO2 nanotubes,” Microporous and Mesoporous Materials, vol. 265, February 2018. [Online]. Available: https://doi.org/10.1016/j.micromeso.2018.02.005

M. S. Reynolds, J. M. Berg, and R. H. Holm, “Kinetics of oxygen atom transfer reactions involving oxomolybdenum complexes. general treatment for reactions with intermediate oxo-bridged molybdenum(V) dimer formation,” Inorganic Chemistry, vol. 23, no. 20, September 1 1984. [Online]. Available: https://doi.org/10.1021/ic00188a007

(1995) Silylating agents: Derivatization reagents, protecting-group reagents, organosilicon compounds, analytical applications, synthetic applications. Fluka Chemika. Accessed Mar. 25, 2020. [Online]. Available: https://bit.ly/2ykc4a2

K. V. R. Chary, T. Bhaskar, G. Kishan, and V. Vijayakumar, “Characterization of MoO3/TiO2 (anatase) catalysts by ESR, 1H MAS NMR, and oxygen chemisorption,” Journal of Physical Chemistry B, vol. 102, no. 20, April 28 1998. [Online]. Available: https://doi.org/10.1021/jp980088r

C. M. Flórez and M. Sánchez, “Fotoxidación catalítica del R(+)-limoneno por el dioxo-dibromo(4,4’-dicarboxilato-2,2’-bipiridina) de Mo(VI) soportado en dióxido de titanio (degussa P-25) (MoO2/TiO2 P-25),” Undergraduate, Universidad Industrial de Santander, Bucarmanga, Colombia, 2009.

A. Palade and et al., “Triphenylphosphine oxide detection in traces using MN(III)-5,10,15,20-tetratolyl-21h,23h porphyrin chloride,” Digest Journal of Nanomaterials and Biostructures, vol. 10, no. 3, pp. 729–735, Jul. 2015.

(2001) UV-Vis spectra of neutral bases and their protonated conjugated cationic acids in acetonitrile. Accessed Mar. 27, 2020. [Online]. Available: https://bit.ly/3abqeI6

E. E. Wegner and A. W. Adamson, “Photochemistry of complex ions. III. absolute quantum yields for the photolysis of some aqueous chromium(III) complexes. chemical actinometry in the long wavelength visible region,” Journal of the American Chemical Society, vol. 88, no. 3, February 1 1966. [Online]. Available: https://doi.org/10.1021/ja00955a003

J. F. Cornet, A. Marty, and J. B. Gros, “Revised technique for the determination of mean incident light fluxes on photobioreactors,” Biotechnology Progress, vol. 13, no. 4, September 2008. [Online]. Available: https://doi.org/10.1021/bp970045c

M. A. Mueses, F. Machuca, and J. Colina, “Determination of quantum yield in a heterogeneous photocatalytic system using a fitting-parameters model,” Journal of Advanced Oxidation Technologies, vol. 11, no. 1, 2008. [Online]. Available: https://doi.org/10.1515/jaots-2008-0105

F. Machuca, “Cálculo de parámetros cinéticos en reacciones foto-catalíticas usando un modelo efectivo de campo de radiación,” Ingeniería y Competitividad, vol. 13, no. 1, 2011. [Online]. Available: https://doi.org/10.25100/iyc.v13i1.2681

M. J. Muñoz, M. M. Ballari, A. Kubacka, O. M. Alfano, and M. Fernández, “Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach,” Chemical Society Review, vol. 48, no. 2, 2019. [Online]. Available: https://doi.org/10.1039/C8CS00108A

O. M. Alfano, A. E. Cassano, J. Marugán, and R. V. Grieken, “Fundamentals of radiation transport in absorbing scattering media,” in Photocatalysis: Fundamentals and Perspectives, J. Schneider, D. Bahnemann, J. Ye, G. L. Puma, and D. D. Dionysiou, Eds. cambridge, UK: Royal Society of Chemistry, 2016, pp. 140–156.

(2018) Structure determination by spectroscopic methods. Oregon State University. Accessed Dec. 14, 2019. [Online]. Available: https://bit.ly/2VepUDU

J. Grajeda, M. R. Kita, L. C. Gregor, P. S. White, and A. J. M. Miller, “Diverse cation-promoted reactivity of iridium carbonyl pincer-crown ether complexes,” Organometallics, vol. 35, no. 3, November 19 2016. [Online]. Available: https://doi.org/10.1021/acs.organomet.5b00786

J. Deerberg and et al., “Stereoselective bulk synthesis of CCR2 antagonist BMS-741672: Assembly of an all-cis (S,R,R)-1,2,4-triaminocyclohexane (TACH) core via sequential heterogeneous asymmetric hydrogenations,” Organic Process Research & Development, vol. 20, no. 11, October 13 2016. [Online]. Available: https://doi.org/10.1021/acs.oprd.6b00282

C. Li, Q. Xin, K. L. Wang, and X. Guo, “FT-IR emission spectroscopy studies of molybdenum oxide and supported molybdena on alumina, silica, zirconia, and titania,” Applied spectroscopy, vol. 45, no. 5, June 1 1991. [Online]. Available: https://doi.org/10.1366/0003702914336651

S. Bagheri, K. Shameli, and S. B. Abd, “Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method,” Journal of Chemistry, 2013. [Online]. Available: https://doi.org/10.1155/2013/848205

P. Wongkrua, T. Thongtem, and S. Thongtem, “Synthesis of h- and α-MoO3 by refluxing and calcination combination: Phase and morphology transformation, photocatalysis, and photosensitization,” Journal of Nanomaterials, August 1 2013. [Online]. Available: https://doi.org/10.1155/2013/702679

L. Seguina, M. Figlarza, R. Cavagnatb, and J. C. Lassègues, “Infrared and raman spectra of MoO3 molybdenum trioxides and MoO3 · xh2o molybdenum trioxide hydrates,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 51, no. 8, July 1995. [Online]. Available: https://doi.org/10.1016/0584-8539(94)00247-9

S. Valencia, J. M. Marín, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” The open Materials Science Journal, vol. 4, June 19 2009. [Online]. Available: https://doi.org/10.2174/1874088X01004010009

L. Galeano, J. A. Navio, G. M. Restrepo, and J. M. Marín, “Preparación de sistemas Óxido de titanio/Óxido de silicio (TiO2/SiO2) mediante el método solvotérmico para aplicaciones en fotocatálisis,” Información tecnológica, vol. 24, no. 5, 2013. [Online]. Available: https://doi.org/10.4067/S0718-07642013000500010

K. Nomiya, Y. Sugie, K. Amimoto, and M. Miwa, “Charge-transfer absorption spectra of some tungsten (VI) and molybdenum (VI) polyoxoanions,” Polyhedron, vol. 6, no. 3, 1987. [Online]. Available: https://doi.org/10.1016/S0277-5387(00)81018-9

J. Meyer and et al., “Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes,” Scientific Reports, vol. 4, p. 5380, Jun. 2014.

M. Dieterle, G. Weinberg, and G. Mestl, “Raman spectroscopy of molybdenum oxides part I. structural characterization of oxygen defects in MoO3−x by dr UV/VIS, raman spectroscopy and x-ray diffraction,” Physical Chemistry Chemical Physics, vol. 4, no. 5, pp. 812–821, Jan. 2002.

H. J. H. Knoezinger, “Raman spectra of molybdenum oxide supported on the surface of aluminas,” Journal of Physical Chemistry A, vol. 82, no. 18, 2002. [Online]. Available: https://doi.org/10.1021/j100507a011

E. J. Ekoi, A. Gowen, R. Dorrepaal, and D. P. Dowling, “Characterisation of titanium oxide layers using raman spectroscopy and optical profilometry: Influence of oxide properties,” Results in Physics, vol. 12, March 2019. [Online]. Available: https://doi.org/10.1016/j.rinp.2019.01.054

O.Frank and et al., “Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18),” Physical Chemistry Chemical Physics, vol. 14, no. 42, August 12 2012. [Online]. Available: https://doi.org/10.1039/C2CP42763J

I. E. Wachs, “Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts,” Catalysis today, vol. 27, no. 3-4, February 1996. [Online]. Available: https://doi.org/10.1016/0920-5861(95)00203-0

M. A. Hamdan, S. Loridant, M. Jahjah, C. Pinel, and N. Perret, “TiO’textsubscript2-supported molybdenum carbide: An active catalyst for the aqueous phase hydrogenation of succinic acid,” Applied Catalysis A: General, vol. 571, December 2018. [Online]. Available: https://doi.org/10.1016/j.apcata.2018.11.009

L. G. Devi and B. N. Murthy, “Characterization of mo doped TiO2 and its enhanced photo catalytic activity under visible light,” Catalysis Letters, vol. 125, no. 3, October 2008. [Online]. Available: https://doi.org/10.1007/s10562-008-9568-4

J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2015.

G. F. Froment, K. Bischoff, and J. de Wilde, hemical Reactor Analysis and Design, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2010.

R. Gao and et al., “Reaction of arylphosphines with singlet oxygen: intra- vs intermolecular oxidation,” Organic Letters, vol. 3, no. 23, October 20 2001. [Online]. Available: https://doi.org/10.1021/ol010195v

N. Serpone, “Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 104, no. 1-3, April 1997. [Online]. Available: https://doi.org/10.1016/S1010-6030(96)04538-8

C. Wang, D. W. Bannemanm, and J. K. Dohrmann, “Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts,” Water Science and Technology, vol. 44, no. 5, February 2001. [Online]. Available: https://doi.org/10.2166/wst.2001.0306

X. Yi and Y. Chun, “Calculation method of quantum efficiency to TIO2 nanocrystal photocatalysis reaction,” Journal of Environmental Sciences, vol. 14, no. 1, pp. 70–75, Feb. 2002.

How to Cite
Sánchez-Velandia, J. E., Páez-Mozo, E. A., & Martínez-Ortega, F. (2020). A kinetic study of the photoinduced oxo-transfer using a Mo complex anchored to TiO2. Revista Facultad De Ingeniería Universidad De Antioquia, (98), 83-93. https://doi.org/10.17533/udea.redin.20200477