Un estudio cinético de la oxo-transferencia fotoinducida usando un complejo de Mo anclado a TiO2
DOI:
https://doi.org/10.17533/udea.redin.20200477Palabras clave:
flujo fotónico, fotooxidación selectiva, complejo dioxo-Molibdeno, rendimiento cuánticoResumen
El estudio cinético de la reacción de transferencia de átomos de oxígeno (TAO) foto asistida se estudió usando un complejo de dioxo-Mo anclado al TiO2, estimulada por la luz en condiciones ambientales usando trifenilfosfina como molécula modelo. La cinética de la reacción TAO fue estudiada con tres sistemas catalíticos anclados al TiO2: 4,4’-dicarboxilato-2,2’-bipiridina-dioxocloromolibdeno (MoO2L/TiO2), H2MoO4 (H2MoO4/TiO2) y óxido de molibdeno (MoO3/ TiO2).. El catalizador MoO2L/TiO2 permitió la conversión más alta del 90% y una selectividad (al óxido de fosfina) cercana al 100%. MoO3/TiO2 no permitió la oxo-transferencia sugiriendo la importancia del ligando bipiridinico como una conexión electrónica entre la unidad MoO2L y el TiO2. Adicionalmente, se observó que cuando se incrementa el flujo fotónico, el rendimiento cuántico y la concentración inicial de la PPh3, aumenta la velocidad de reacción de la TAO para el sistema MoO2L/TiO2.
Descargas
Citas
Z. Guo and et al., “Recent advances in heterogeneous selectiveoxidation catalysis for sustainable chemistry,” Chemical Society Reviews, vol. 43, pp. 3480–3524, 2014.
R. Neumann and A. Khenkin, “Molecular oxygen and oxidation catalysis by phosphovanadomolybdates,” Chemical Communications, vol. 24, pp. 2529–2538, Mar. 2006.
S. Gosh and et al., “Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen,” ACS Catalysis, vol. 4, no. 7, June 3 2014. [Online]. Available: https://doi.org/10.1021/cs5004454
N. J. Castellanos, “Síntesis, caracterización y evaluación de la actividad foto catalítica de los complejos 1,10-fenantrolina-dibromo-dioxo-molibdeno(VI) y 1,10-fenantrolina-dicloro-dioxo-molibdeno (VI),” Undergraduate, Universidad Industrial de Santander, Bucaramanga, Colombia, 2005.
N. J. Castellanos, “Estudio del efecto de ligandos N-heterocíclicos insaturados en la oxo-transferencia foto-inducida con complejos del tipo MoO2Cl2Ln/TiO2,” Ph.D. Dissertation, Universidad Industrial de Santander, Bucaramanga, Colombia, 2011.
H. Arzoumanian, N. J. Castellanos, F. O. Martínez, E. O. Páez, and F. Ziarelli, “Silicon-assisted direct covalent grafting on metal oxide surfaces: Synthesis and characterization of carboxylate N,N’-Ligands on TiO2,” European Journal of Inorganic Chemistry, vol. 2010, no. 11, March 31 2010. [Online]. Available: https://doi.org/10.1002/ejic.200901092
H. Arzoumanian, “Molybdenum-oxo and peroxo complexes in oxygen atom transfer processes with O2 as the primary oxidant,” Current Inorganic Chemistry, vol. 1, no. 2, 2011. [Online]. Available: https://doi.org/10.2174/1877944111101020140
J. Kim, N. Ichikuni, T. Hara, and S. Shimazu, “Study on the selectivity of propane photo-oxidation reaction on SBA-15 supported Mo oxide catalyst,” Catalysis Today, vol. 265, May 1 2016. [Online]. Available: https://doi.org/10.1016/j.cattod.2015.09.043
R. A. Salamony, H. M. Gobara, and S. A. Younis, “Potential application of MoO3 loaded SBA-15 photo-catalyst for removal of multiple organic pollutants from water environment,” Journal of water process Engineering, vol. 18, August 2017. [Online]. Available: https://doi.org/10.1016/j.jwpe.2017.06.010
P. Basu, B. W. Kail, and C. G. Young, “The influence of the oxygen atom acceptor on the reaction coordinate and mechanism of oxygen atom transfer from the dioxo-Mo(VI) complex, TpiprMoO2(OPh), to tertiary phosphines,” Inorganic Chemistry, vol. 49, no. 11, 2010. [Online]. Available: https://doi.org/10.1021/ic902500h
J. M. Tunney, J. McMaster, and C. D. Garner, “Molybdenum and tungsten enzymes,” in Comprehensive Coordination Chemistry II, J. A. McCleverty and T. J. Meyer, Eds. New York, USA: Elsevier Ltd, 2003, pp. 459–477.
H. Martínez and et al., “Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4’-dicarboxylato-2,2’-bipyridine) molybdenum(VI) grafted on mesoporous TiO2,” Journal of Molecular Catalysis A: Chemical, vol. 423, November 2016. [Online]. Available: https://doi.org/10.1016/j.molcata.2016.07.006
H. Martínez, . A. Amaya, E. A. Páez, and F. Martínez, “Highly efficient epoxidation of α-pinene with O2 photocatalyzed by dioxoMo(VI) complex anchored on TiO2 nanotubes,” Microporous and Mesoporous Materials, vol. 265, February 2018. [Online]. Available: https://doi.org/10.1016/j.micromeso.2018.02.005
M. S. Reynolds, J. M. Berg, and R. H. Holm, “Kinetics of oxygen atom transfer reactions involving oxomolybdenum complexes. general treatment for reactions with intermediate oxo-bridged molybdenum(V) dimer formation,” Inorganic Chemistry, vol. 23, no. 20, September 1 1984. [Online]. Available: https://doi.org/10.1021/ic00188a007
(1995) Silylating agents: Derivatization reagents, protecting-group reagents, organosilicon compounds, analytical applications, synthetic applications. Fluka Chemika. Accessed Mar. 25, 2020. [Online]. Available: https://bit.ly/2ykc4a2
K. V. R. Chary, T. Bhaskar, G. Kishan, and V. Vijayakumar, “Characterization of MoO3/TiO2 (anatase) catalysts by ESR, 1H MAS NMR, and oxygen chemisorption,” Journal of Physical Chemistry B, vol. 102, no. 20, April 28 1998. [Online]. Available: https://doi.org/10.1021/jp980088r
C. M. Flórez and M. Sánchez, “Fotoxidación catalítica del R(+)-limoneno por el dioxo-dibromo(4,4’-dicarboxilato-2,2’-bipiridina) de Mo(VI) soportado en dióxido de titanio (degussa P-25) (MoO2/TiO2 P-25),” Undergraduate, Universidad Industrial de Santander, Bucarmanga, Colombia, 2009.
A. Palade and et al., “Triphenylphosphine oxide detection in traces using MN(III)-5,10,15,20-tetratolyl-21h,23h porphyrin chloride,” Digest Journal of Nanomaterials and Biostructures, vol. 10, no. 3, pp. 729–735, Jul. 2015.
(2001) UV-Vis spectra of neutral bases and their protonated conjugated cationic acids in acetonitrile. Accessed Mar. 27, 2020. [Online]. Available: https://bit.ly/3abqeI6
E. E. Wegner and A. W. Adamson, “Photochemistry of complex ions. III. absolute quantum yields for the photolysis of some aqueous chromium(III) complexes. chemical actinometry in the long wavelength visible region,” Journal of the American Chemical Society, vol. 88, no. 3, February 1 1966. [Online]. Available: https://doi.org/10.1021/ja00955a003
J. F. Cornet, A. Marty, and J. B. Gros, “Revised technique for the determination of mean incident light fluxes on photobioreactors,” Biotechnology Progress, vol. 13, no. 4, September 2008. [Online]. Available: https://doi.org/10.1021/bp970045c
M. A. Mueses, F. Machuca, and J. Colina, “Determination of quantum yield in a heterogeneous photocatalytic system using a fitting-parameters model,” Journal of Advanced Oxidation Technologies, vol. 11, no. 1, 2008. [Online]. Available: https://doi.org/10.1515/jaots-2008-0105
F. Machuca, “Cálculo de parámetros cinéticos en reacciones foto-catalíticas usando un modelo efectivo de campo de radiación,” Ingeniería y Competitividad, vol. 13, no. 1, 2011. [Online]. Available: https://doi.org/10.25100/iyc.v13i1.2681
M. J. Muñoz, M. M. Ballari, A. Kubacka, O. M. Alfano, and M. Fernández, “Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach,” Chemical Society Review, vol. 48, no. 2, 2019. [Online]. Available: https://doi.org/10.1039/C8CS00108A
O. M. Alfano, A. E. Cassano, J. Marugán, and R. V. Grieken, “Fundamentals of radiation transport in absorbing scattering media,” in Photocatalysis: Fundamentals and Perspectives, J. Schneider, D. Bahnemann, J. Ye, G. L. Puma, and D. D. Dionysiou, Eds. cambridge, UK: Royal Society of Chemistry, 2016, pp. 140–156.
(2018) Structure determination by spectroscopic methods. Oregon State University. Accessed Dec. 14, 2019. [Online]. Available: https://bit.ly/2VepUDU
J. Grajeda, M. R. Kita, L. C. Gregor, P. S. White, and A. J. M. Miller, “Diverse cation-promoted reactivity of iridium carbonyl pincer-crown ether complexes,” Organometallics, vol. 35, no. 3, November 19 2016. [Online]. Available: https://doi.org/10.1021/acs.organomet.5b00786
J. Deerberg and et al., “Stereoselective bulk synthesis of CCR2 antagonist BMS-741672: Assembly of an all-cis (S,R,R)-1,2,4-triaminocyclohexane (TACH) core via sequential heterogeneous asymmetric hydrogenations,” Organic Process Research & Development, vol. 20, no. 11, October 13 2016. [Online]. Available: https://doi.org/10.1021/acs.oprd.6b00282
C. Li, Q. Xin, K. L. Wang, and X. Guo, “FT-IR emission spectroscopy studies of molybdenum oxide and supported molybdena on alumina, silica, zirconia, and titania,” Applied spectroscopy, vol. 45, no. 5, June 1 1991. [Online]. Available: https://doi.org/10.1366/0003702914336651
S. Bagheri, K. Shameli, and S. B. Abd, “Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method,” Journal of Chemistry, 2013. [Online]. Available: https://doi.org/10.1155/2013/848205
P. Wongkrua, T. Thongtem, and S. Thongtem, “Synthesis of h- and α-MoO3 by refluxing and calcination combination: Phase and morphology transformation, photocatalysis, and photosensitization,” Journal of Nanomaterials, August 1 2013. [Online]. Available: https://doi.org/10.1155/2013/702679
L. Seguina, M. Figlarza, R. Cavagnatb, and J. C. Lassègues, “Infrared and raman spectra of MoO3 molybdenum trioxides and MoO3 · xh2o molybdenum trioxide hydrates,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 51, no. 8, July 1995. [Online]. Available: https://doi.org/10.1016/0584-8539(94)00247-9
S. Valencia, J. M. Marín, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” The open Materials Science Journal, vol. 4, June 19 2009. [Online]. Available: https://doi.org/10.2174/1874088X01004010009
L. Galeano, J. A. Navio, G. M. Restrepo, and J. M. Marín, “Preparación de sistemas Óxido de titanio/Óxido de silicio (TiO2/SiO2) mediante el método solvotérmico para aplicaciones en fotocatálisis,” Información tecnológica, vol. 24, no. 5, 2013. [Online]. Available: https://doi.org/10.4067/S0718-07642013000500010
K. Nomiya, Y. Sugie, K. Amimoto, and M. Miwa, “Charge-transfer absorption spectra of some tungsten (VI) and molybdenum (VI) polyoxoanions,” Polyhedron, vol. 6, no. 3, 1987. [Online]. Available: https://doi.org/10.1016/S0277-5387(00)81018-9
J. Meyer and et al., “Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes,” Scientific Reports, vol. 4, p. 5380, Jun. 2014.
M. Dieterle, G. Weinberg, and G. Mestl, “Raman spectroscopy of molybdenum oxides part I. structural characterization of oxygen defects in MoO3−x by dr UV/VIS, raman spectroscopy and x-ray diffraction,” Physical Chemistry Chemical Physics, vol. 4, no. 5, pp. 812–821, Jan. 2002.
H. J. H. Knoezinger, “Raman spectra of molybdenum oxide supported on the surface of aluminas,” Journal of Physical Chemistry A, vol. 82, no. 18, 2002. [Online]. Available: https://doi.org/10.1021/j100507a011
E. J. Ekoi, A. Gowen, R. Dorrepaal, and D. P. Dowling, “Characterisation of titanium oxide layers using raman spectroscopy and optical profilometry: Influence of oxide properties,” Results in Physics, vol. 12, March 2019. [Online]. Available: https://doi.org/10.1016/j.rinp.2019.01.054
O.Frank and et al., “Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18),” Physical Chemistry Chemical Physics, vol. 14, no. 42, August 12 2012. [Online]. Available: https://doi.org/10.1039/C2CP42763J
I. E. Wachs, “Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts,” Catalysis today, vol. 27, no. 3-4, February 1996. [Online]. Available: https://doi.org/10.1016/0920-5861(95)00203-0
M. A. Hamdan, S. Loridant, M. Jahjah, C. Pinel, and N. Perret, “TiO’textsubscript2-supported molybdenum carbide: An active catalyst for the aqueous phase hydrogenation of succinic acid,” Applied Catalysis A: General, vol. 571, December 2018. [Online]. Available: https://doi.org/10.1016/j.apcata.2018.11.009
L. G. Devi and B. N. Murthy, “Characterization of mo doped TiO2 and its enhanced photo catalytic activity under visible light,” Catalysis Letters, vol. 125, no. 3, October 2008. [Online]. Available: https://doi.org/10.1007/s10562-008-9568-4
J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2015.
G. F. Froment, K. Bischoff, and J. de Wilde, hemical Reactor Analysis and Design, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2010.
R. Gao and et al., “Reaction of arylphosphines with singlet oxygen: intra- vs intermolecular oxidation,” Organic Letters, vol. 3, no. 23, October 20 2001. [Online]. Available: https://doi.org/10.1021/ol010195v
N. Serpone, “Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 104, no. 1-3, April 1997. [Online]. Available: https://doi.org/10.1016/S1010-6030(96)04538-8
C. Wang, D. W. Bannemanm, and J. K. Dohrmann, “Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts,” Water Science and Technology, vol. 44, no. 5, February 2001. [Online]. Available: https://doi.org/10.2166/wst.2001.0306
X. Yi and Y. Chun, “Calculation method of quantum efficiency to TIO2 nanocrystal photocatalysis reaction,” Journal of Environmental Sciences, vol. 14, no. 1, pp. 70–75, Feb. 2002.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Facultad de Ingeniería Universidad de Antioquia
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.