Water supply failure probability under influence of climate change—Balsillas river basin case study

Keywords: Agroclimatology, agriculture, climate change adaptation, hydrology, water consumption


This project assesses the risk of water supply failure for the agricultural sector under climate change conditions by implementing hydrological models that support decision-making for satisfying consumptive demands in times of scarcity. This project was developed using hydrological modeling tools such as the HydroBID software and the SIMGES and SIMRISK water resource management models of AQUATOOL DSS. The flow series for a current scenario were obtained for different climate change scenarios from a Global Climate Model (GCM) and the Coordinated Regional Experiment on Climate Reduction (CORDEX) by downscaling the results from the global scale to basin-scale using a statistical method based on chaos theory. These projections show that under conditions of climate change, the agricultural sector of the Balsillas basin will not suffer significant impacts since they will be able to satisfy most demand points.

= 218 veces | PDF
= 133 veces|


Download data is not yet available.

Author Biographies

Darwin Mena Rentería, Universidad Santo Tomás

Facultad de Ingeniería Ambiental Professor

Eydy Michell Espinosa, Universidad Santo Tomás

Environmental School

Paula Carolina Soler, Universidad Santo Tomás

Environmental School

Miguel Cañón Ramos, Universidad Santo Tomás

Environmental School

Freddy Santiago Duarte, Escuela Colombiana Ingeniería Julio Garavito

Center for Hydraulic Studies

Jordi Rafael Palacios González, Universidad Sergio Arboleda

Center for Hydraulic Studies


F. Duarte, J. R. Palacios, and G. R. Santos, “Evaluation of threats to agriculture in the totaré river basin due to changes in rainfall patterns under climate change scenarios,” in International Conference of ICT for Adapting Agriculture to Climate Change-AACC 2018, 2018, pp. 234–248.

Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá, Colombia: Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010.

M. A. Mariño and S. P. Simonovic, “Integrated Water Resources Management,” in International Symposium on Integrated Water Resources Management , Davis, California, USA, 2000.

Instituto de Hidrología, Meteorología y Estudios Ambientales, Estudio Nacional del Agua 2018. Bogotá, Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales, 2019.

G. C. Nelson and et al, Cambio Climático. El impacto en la agricultura y los costos de adaptación. Washington, D.C.: Instituto Internacional de Investigación sobre Políticas Alimentarias IFPRI, 2009.

O. Ocampo, “El cambio climático y su impacto en el agro,” Revista de Ingeniería, no. 33, pp. 115–123, 2011.

P. Smith and et al, “Agriculture, Forestry and Other Land Use (AFOLU),” in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, O. Edenhofer and et al, Eds. Cambridge, UK and New York, USA: Cambridge University Press, 2014, pp. 811–922.

C. Bryant, N. Carvajal, K. Delusca, O. Daouda, and A. Sarr, “Metropolitan vulnerability and strategic roles for periurban agricultural territories in the context of climate change and variability,” Cuadernos de Geografía: Revista Colombiana de Geografía, vol. 22, no. 2, pp. 55–687, Jul. 2013.

R. Macías and et al, “Vulnerability to climate change of smallholder cocoa producers in the province of Manabí, Ecuador,” Revista Facultad Nacional de Agronomía Medellín, vol. 72, no. 1, January 2019. [Online]. Available: http://dx.doi.org/10.15446/rfnam.v72n1.72564

J. P. Serna and J. E. Cañón, “Projecting the future of Ayapel Cienaga: A hydroecologic analysis under climate change scenarios,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 95, April 2020. [Online]. Available: http://dx.doi.org/10.17533/udea.redin.20190940

Z. Dong and et al, “A novel method for quantitatively evaluating agricultural vulnerability to climate change,” Ecol. Indic., vol. 48, January 2015. [Online]. Available: https://doi.org/10.1016/j.ecolind.2014.07.032

L. Wiréhn, T. Opach, and T. S. Neset, “Assessing Agricultural Vulnerability to Climate Change in the Nordic Countries–An Interactive Geovisualization Approach,” J. Environ. Plan. Manag., vol. 60, no. 1, 2017. [Online]. Available: https://doi.org/10.1080/09640568.2016.1143351

T. S. Neset, L. Wiréhn, T. Opach, E. Glaas, and B. O. Linnér, “Evaluation of indicators for agricultural vulnerability to climate change: The case of Swedish agriculture,” Ecol. Indic., vol. 105, October 2019. [Online]. Available: https://doi.org/10.1016/j.ecolind.2018.05.042

T. Blonch. (2011, Sep) Negociosinclusivos.org. [Online]. Available: https://n9.cl/rok9i

M. E. Fernández, “Efectos del cambio climático en la produccion y rendimiento de cultivos por sectores. Evaluacion del riesgo agroclimático por sectores,” Fondo financiero de Proyectos de Desarrollo–FONADE, Instituto de Hidrologia, Meteorologia y Estudios Ambientales–IDEAM, Tech. Rep. CO-T1150, Mar. 2013.

W. N. Adger and et al, “Assessment of adaptation practices, options, constraints and capacity,” in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L. Parry and et al, Eds. Cambridge, UK: Cambridge University Press, 2007, pp. 717–743.

F. Moreda, W. Mirallesm, and R. Muñoz, “Hydro-BID: An integrated system for modeling impacts of climate change on water resources. Part 2 ,” Inter-American Development Bank, Tech. Rep. IDB-TN-529, Dec. 2014.

F. Duarte, G. Corzo, G. Santos, and O. Hernández, “Chaotic statistical downscaling (CSD): Application and comparison in the Bogotá river basin,” in HIC 2018. 13th International Conference on Hydroinformatics, 2018, pp. 626–634.

J. Andreu, J. Capilla, and E. Sanchís, “AQUATOOL, a generalized decision-support system for water-resources planning and operational management,” Journal of Hydrology, vol. 177, no. 3-4, April 1 1996. [Online]. Available: https://doi.org/10.1016/0022-1694(95)02963-X

Modelo SIMRISK de Simulación múltiple de la Gestión de Recursos Hídricos con estimación del riesgo, incluyendo Utilización Conjunta, Versión 2.4 ed., Universidad Politécnica de Valencia, 2007.

S. H. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network Flows, 4th ed. New Jersey: John Wiley & Sons, 2011.

S. Suárez, M. Pedro, J. Paredes, J. Andreu, and A. Solera, “Linking pan-european data to the local scale for decision making for global change and water scarcity within water resources planning and management,” Sci. Total Environ., vol. 603-604, December 15 2017. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2017.05.259

A. Avilés, A. Solera, J. Paredes, and M. Pedro, “Integrated methodological framework for assessing the risk of failure in water supply incorporating drought forecasts. Case study: Andean regulated river basin,” Water Resour. Manag., vol. 32, November 2017. [Online]. Available: https://doi.org/10.1007/s11269-017-1863-7

A. Avilés and A. Solera, “Estimación del riesgo de fallo en el suministro de agua como ayuda a la planificación y gestión de recursos hídricos,” MASKANA, vol. 3, no. 2, December 2012. [Online]. Available: https://doi.org/10.18537/mskn.03.02.06

Metodología para incluir variabilidad climática y escenarios de cambio climático en el modelo weap de la macro cuenca del Magdalena y resultados de las simulaciones, The Nature Conservancy (TNC), United States Agency for International Development (USAID), Bogotá, Col, 2014.

How to Cite
Mena Rentería, D., Espinosa, E. M., Soler, P. C., Cañón Ramos, M., Duarte, F. S., & Palacios González, J. R. (2020). Water supply failure probability under influence of climate change—Balsillas river basin case study. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20201008