Estudio de un criterio de similaridad en la mejora de imágenes cardiacas de tomografía computarizada
DOI:
https://doi.org/10.17533/udea.redin.20200799Palabras clave:
tecnología médica, procesamiento de datos, algoritmo, medición, análisis de datosResumen
Este trabajo se focaliza en el estudio de un filtro particular basado en un criterio de similaridad que se ha aplicado para realzar la información contenida en las imágenes adquiridas bajo diferentes modalidades de imagenología cardiaca. La atención principal de este estudio es examinar qué componente del criterio de similaridad genera información más relevante, útil para para aumentar la calidad de la imagen médica. En este sentido, se establecen cuatro estudios de caso, primero se considera una formulación completa del criterio de similaridad, y luego tres casos adicionales relacionados cada uno con cada componente del criterio, dichos casos se denominan full, main, residual, y residual, respectivamente. Para el estudio, se considera la utilización de una función de puntuación para cuantificar y posteriormente evaluar el impacto de cada componente del criterio de similaridad. Dicha medida es una relación entre algunas medidas de mejora de imagen de referencia completa y otras de referencia ciega. Un phanthom generado por computadora y un conjunto de datos clínicos representativos, 1.270 imágenes tridimensionales de 126 pacientes, se utilizan en una evaluación exhaustiva del criterio de similaridad. En términos generales de rendimiento de la técnica de mejora de la imagen, los resultados del estudio revelan que la componente residual1 supera a las otras dos componentes del criterio o a su formulación completa.
Descargas
Citas
A. Gómez, G. Díez, and A. E. Salazar, “A markov random field image segmentation model for lizard spots,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 79, June 16 2016. [Online]. Available: https://doi.org/10.17533/udea.redin.n79a05
O. Hurtado, H. Rueda, and H. Arguello, “An algorithm for learning sparsifying transforms of multidimensional signals,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 83, June 26 2017. [Online]. Available: https://doi.org/10.17533/udea.redin.n83a10
N. Terashima, “Computer vision,” in Intelligent Communication Systems, N. Terashima, Ed. San Diego: Academic Press, 2002, pp. 149–179.
J. M. Vianney, A. J. Rosales, F. J. Gallegos, and A. Arellano, “Computer-aided diagnosis of brain tumors using image enhancement and fuzzy logic,” Dyna, vol. 81, no. 183, pp. 148–157, mar 2014.
I. Bankman, Handbook of Medical Imaging: Processing and Analisys, 2nd ed. USA: Academic Press, 2008.
G. D. Rubin, “Computed tomography: Revolutionizing the practice of medicine for 40 years,” Radiology, vol. 273, no. 2 Suppl, November 2014. [Online]. Available: https://doi.org/10.1148/radiol.14141356
T. G. Flohr and et al, “Multi–detector row CT systems and image–reconstruction techniques,” Radiology, vol. 235, no. 3, June 1 2005. [Online]. Available: https://doi.org/10.1148/radiol.2353040037
D. T. Ginat and R. Gupta, “Advances in computed tomography imaging technology,” Annual Review of Biomedical Engineering, vol. 16, July 11 2014. [Online]. Available: https://doi.org/10.1146/annurev-bioeng-121813-113601
F. F. Faletra, N. G. Pandian, and S. Y. Ho, Anatomy of the Heart by Multislice Computed Tomography. UK: Wiley-Blackwel, 2008.
G. Deng, “A generalized unsharp masking algorithm,” IEEE Transaction on Image Processing, vol. 20, no. 5, May 2011. [Online]. Available: https://doi.org/10.1109/TIP.2010.2092441
T. Chaira, “An improved medical image enhancement scheme using Type II fuzzy set,” Applied Soft Computing, vol. 25, December 2014. [Online]. Available: https://doi.org/10.1016/j.asoc.2014.09.004
Z. Al-Ameen and G. Sulong, “A new algorithm for improving the low contrast of computed tomography images using tuned brightness controlled single-scale Retinex,” Scanning, vol. 37, no. 2, March 2015. [Online]. Available: https://doi.org/10.1002/sca.21187
E. Daniel and J. Anitha, “Optimum wavelet based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm,” Computers in Biology and Medicine, vol. 71, April 1 2016. [Online]. Available: https://doi.org/10.1016/j.compbiomed.2016.02.011
P. Zhuang, X. Fu, Y. Huang, and X. Ding, “Image enhancement using divide-and-conquer strategy,” Journal of Visual Communication and Image Representation, vol. 45, May 2017. [Online]. Available: https://doi.org/10.1016/j.jvcir.2017.02.018
L. Rundo and et al, “MedGA: A novel evolutionary method for image enhancement in medical imaging systems,” Expert Systems with Applications, vol. 119, April 1 2019. [Online]. Available: https://doi.org/10.1016/j.eswa.2018.11.013
R. M. Haralick and L. G. Shapiro, Computer and Robot Vision. Boston, USA: Addison-Wesley, 1992.
A. Bravo and R. Medina, “An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms,” Computerized Medical Imaging and Graphics, vol. 32, no. 5, July 2008. [Online]. Available: https://doi.org/10.1016/j.compmedimag.2008.03.003
J. Clemente, A. Bravo, and R. Medina, “Using morphological and clustering analysis for left ventricle detection in MSCT cardiac images,” in Proceedings of IEEE International Symposium on Signal Processing and Information Technology, Sarajevo, 2008, pp. 264–269.
A. Bravo, J. Clemente, M. Vera, J. Avila, and R. Medina, “A hybrid boundary–region left ventricle segmentation in computed tomography,” in Proceedings of International Conference on Computer Vision Theory and Applications, Angers, France, 2010, pp. 107–114.
A. Bravo, M. Vera, M. Garreau, and R. Medina, “Three–dimensional segmentation of ventricular heart chambers from multi–slice computerized tomography: An hybrid approach,” in Proceedings of Digital Information and Communication Technology and Its Applications-DICTAP 2011, France, 2011, pp. 287–301.
M. Vera, A. Bravo, M. Garreau, and R. Medina, “Similarity enhancement for automatic segmentation of cardiac structures in computed tomography volumes,” in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 2011, pp. 8094–8097.
M. Vera, A. Bravo, and R. Medina, “Improving ventricle detection in 3–D cardiac multislice computerized tomography images,” in International Conference on Computer Vision, Imaging and Computer Graphics-VISIGRAPP 2010, France, 2011, pp. 170–183.
G. C. and et al, “A score function as quality measure for cardiac image enhancement techniques assessment,” Revista Latinoamericana de Hipertensión, vol. 14, no. 2, pp. 180–186, 2019.
M. Vera, “Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multi-corte,” Ph. D. dissertation, Universidad de Los Andes, Mérida, Venezuela, 2014.
L. Devroye, Non-Uniform Random Variate Generation. USA: Springer Verlag, 1986.
A. Primak, C. McCollough, M. Bruesewitz, J. Zhang, and J. Fletcher, “Relationship between noise, dose, and pitch in cardiac multi–detector row CT,” Radiographics, vol. 26, no. 6, November 2006. [Online]. Available: https://doi.org/10.1148/rg.266065063
L. J. Kroft, A. de Roos, and J. Geleijns, “Artifacts in ECG–synchronized MDCT coronary angiography,” American Journal of Roentgenology, vol. 189, no. 3, September 2007. [Online]. Available: https://doi.org/10.2214/AJR.07.2138
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. New Jersey, USA: Prentice Hall, 2006.
W. Schroeder, K. M. Martin, and W. E. Lorensen, The Visualization Toolkit: An Object-oriented Approach to 3D Graphics, 2nd ed. USA: Kitware, 2006.
World Health Organization. (2011) Global status report on noncommunicable diseases 2010. [World Health Organization]. [Online]. Available: https://bit.ly/2CFYD6G
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.