El cemento portland y su potencial uso en ingeniería de tejido óseo. Fase I: estudios de biocompatibilidad-efectos del hidróxido de calcio

Autores/as

  • Daniel Gallego Escuela de Ingeniería de Antioquia
  • Luis Ernesto López Escuela de Ingeniería de Antioquia
  • Derek Hansford The Ohio State University
  • Jonas Klemas The Ohio State University

DOI:

https://doi.org/10.17533/udea.redin.343394

Palabras clave:

biocompatibilidad, carbonatación, carbonato de calcio, citotoxicidad, contacto directo

Resumen

Actualmente existe una creciente e insatisfecha demanda de substitutos óseos con buen desempeño, tanto desde el punto de vista biológico como mecánico. Basados en las excelentes propiedades mecánico-estructurales del cemento pórtland, se plantea un estudio exploratorio de biocompatibilidad de este material. Se prepararon substratos de cemento pórtland gris tipo I bajo diferentes tratamientos (neutralizado-SN, carbonatado-SC, y no neutralizado-SnN), los cuales fueron luego sometidos a un ensayo de contacto directo con células CHO y HOS durante 24 h. Los substratos se caracterizaron por SEM, y tinciones con fnolftaleía para determinar su pH; mientras que la evaluación del estado del cultivo fue realizada por microscopía de contraste de fase. Los resultados indican que el pH fue mayor para SnN (> 12,0), seguido de SN, y finalmente de los SC (≈ 7,4); de igual manera se observó que la citotoxicidad de los substratos disminuyó en proporción al valor del pH. Se postula que el Ca(OH)2 formado durante la hidratación del cemento es el causante del efecto tóxico de éste, y que al agotar las fuentes de Ca(OH)2, ya sea por carbonatación o neutralización, se afecta de manera positiva la biocompatibilidad del cemento pórtland.

|Resumen
= 112 veces | PDF
= 39 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Daniel Gallego, Escuela de Ingeniería de Antioquia

Grupo de Investigación en Ingeniería Biomédica CES – EIA, Instituto de Ciencias de la Salud

Luis Ernesto López, Escuela de Ingeniería de Antioquia

Grupo de Investigación en Ingeniería Biomédica CES – EIA, Instituto de Ciencias de la Salud.

Derek Hansford, The Ohio State University

Biomedical Engineering Department-The Ohio State University, The Ohio MicroMD Laboratory.

Jonas Klemas, The Ohio State University

Biomedical Engineering Department-The Ohio State University, The Ohio MicroMD Laboratory.

Citas

J. R. Jones, L. L. Hench. “Regeneration of trabecular bone using porous ceramics”. Cur Op Sol State Mat Sci. Vol. 7. 2003. pp. 301-307. DOI: https://doi.org/10.1016/j.cossms.2003.09.012

B. D. Boyan, C. H. Lohmann, J. Romero, Z. Schwartz. “Bone and cartilage tissue engineering”. Clin Plast Surg. Vol. 26. 1999. pp. 629-645. DOI: https://doi.org/10.1016/S0094-1298(20)32662-6

L. G. Griffith, G. Naughton. “Tissue engineering-current challenges and expanding opportunities”. Science. Vol. 8. 2002. pp. 1009-1014. Figura 4 Fotografía (30X) de una matriz porosa en cemento pórtland blanco tipo I, fabricada con el proceso de Particulate Leaching (la barra blanca indica una medida de 1 mm) DOI: https://doi.org/10.1126/science.1069210

D. W. Jackson, T. M. Simon. “Tissue engineering principles in orthopaedic surgery”. En: Clin Orthop. Vol. 367. 1999. pp. 531-545. DOI: https://doi.org/10.1097/00003086-199910001-00005

S. Vogt, Y. Larcher, B. Wilke, M. Schnabelrauch. “Fabrication of highly porous scaffold materials based on functionalized oligolactides and preliminary results on their use in bone tissue engineering”. Eur Cells Mat. Vol. 4. 2002. pp. 30-38. DOI: https://doi.org/10.22203/eCM.v004a03

O. Schultz, M. Sittinger, T. Haeupl, G. R. Burmester. “Emerging strategies of bone and joint repair”. Arthritis Res. Vol. 2. 2000. pp. 433–436. DOI: https://doi.org/10.1186/ar123

F. P. Luyten, F. Dell’Accio, C. de Bari. “Skeletal tissue engineering: opportunities and challenges”. Best Pract Res Clin Rheumatol. Vol. 15. 2001. pp. 759-769. DOI: https://doi.org/10.1053/berh.2001.0192

L. L. Hench, J. M. Polak. “Third-generation biomedical materials”. Science. Vol. 8. 2002. pp. 1007-1014. DOI: https://doi.org/10.1126/science.1067404

K. J. Burg, S. Porter, J. F. Kellam. “Biomaterial developments for bone tissue engineering”. Biomaterials. Vol. 21. 2000. pp. 2347-2359. DOI: https://doi.org/10.1016/S0142-9612(00)00102-2

C. M. Agrawal, K. A. Athanasiou. “Technique to control pH in vicinity of biodegrading PLA-PGA implants”. J Biomed Mater Res. Vol. 38.1997. pp. 105-14. DOI: https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO;2-U

J. C. Middleton, A. J. Tipton. “Synthetic biodegradable polymers as orthopedic devices”. Biomaterials. Vol. 21. 2000. pp. 2335-2346. DOI: https://doi.org/10.1016/S0142-9612(00)00101-0

R. di Toro, V. Betti, S. Spampinato. “Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers”. Eur J Pharm Sci. Vol. 21. 2004. pp. 161-169. DOI: https://doi.org/10.1016/j.ejps.2003.10.001

D. C. Tancred, A. J. Carr, B. A. McCormack. “Development of a new synthetic bone graft”. J Mater Sci Mater Med. Vol. 9.1998. pp. 819-823. DOI: https://doi.org/10.1023/A:1008992011133

K. Hae-Won, L. Seung-Yong, B. Chang-Jun, N. YoonJung, K. Hyoun-Ee, K. Hyun-Man, K. Jea Seung. “Porous ZrO 2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer”. Biomaterials. Vol. 24. 2003. pp. 3277-3284. DOI: https://doi.org/10.1016/S0142-9612(03)00162-5

C. Bargholz. “Perforation repair with mineral trioxide aggregate: a modified matrix concept”. Int Endod J. Vol. 38. 2005. pp. 59-69. DOI: https://doi.org/10.1111/j.1365-2591.2004.00901.x

QLC Group of Companies. The hardening of Portland Cement. QLC Group Technical note 1999. http://www. ach.com.au/qcl/pdf_files/Cem_hard.pdf. Consultado Marzo 2005.

U. R. Funteas, J. A. Wallace, E. W. Fochtman. “A comparative analysis of Mineral Trioxide Aggregate and Portland cement”. Aust Endod J. Vol. 29. 2003. pp. 43-44. DOI: https://doi.org/10.1111/j.1747-4477.2003.tb00498.x

E. T. Koh, M. Torabinejad, T. R. Pitt Ford, K. Brady, F. McDonald. “Mineral trioxide aggregate stimulates a biological response in human osteoblasts”. Biomed Mater Res. Vol. 5. 1997. pp. 432-439. DOI: https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D

S. J. Northup, J. N. Cammack. “Mammalian cell culture models”. Handbook of biomaterial evaluation: scientific, technical, and clinical testing of implant materials. 2.a ed. Taylor & Francis. Ann Arbor. 1999. pp.325-339.

J. P. Kaltenbach, M. H. Kaltenbach, W. B. Lyons. “Nigrosin as a dye for differentiating live and dead ascites cells”. Exp Cell Res. Vol. 15. 1958. pp. 112-117. DOI: https://doi.org/10.1016/0014-4827(58)90067-3

R. I. Freshney. “Cytotoxicity”. Culture of Animal Cells: A Manual of Basic Technique. Wiley. New York. 2000. p. 331.

M. Pawinska, E. Skrzydlewska. “Release of hydroxyl ions from calcium hydroxide preparations used in endodontic treatment”. An Acad Med Bialost. Vol. 48. 2003. pp. 145-149.

M. K. Caliscan, M. Tûrkûn. “Prognosis of permanent teeth with internal resorption: a clinical review”. Endod Dent Traumatol. Vol. 13. 1997. pp. 75-78. DOI: https://doi.org/10.1111/j.1600-9657.1997.tb00014.x

S. J. Clark, P. Eleazer. “Management of a horizontal root fracture after previous root canal therapy”. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. Vol. 89. 2000. pp. 220-223. DOI: https://doi.org/10.1067/moe.2000.102657

S. Seltzer. Endodontology Ciologic considerations in endodontic procedures, 2a ed, Philadelphia, Lea & Felager Co. 1988. pp. 281-325.

R. Weinstein, M. Goldman. “Apical hard tissue deposition in adult teeth of monkeys with use of calcium hydroxide”. Oral Surg Oral Med Oral Pathol. Vol. 43. 1977. pp. 627-630. DOI: https://doi.org/10.1016/0030-4220(77)90119-0

G. J. Verbeck. Carbonation of Hydrated Portland Cement. Research and Development Laboratories of the Portland Cement Association. Bulletin 87. 1958. DOI: https://doi.org/10.1520/STP39460S

S. H. Inayat-Hussain, N. F. Rajab, H. Roslie, A. A. Hussin, A. M. Ali, B. O. Annuar. “Cell death induced by hydroxyapatite on L929 fibroblast cells”. Med J Malaysia. Vol. 59. 2004. pp. 176-177.

T. G. Van Kooten, C. L. Klein, H. Kohler, C. J. Kirkpatrick, D. F. Williams, R. Eloy. ”From cytotoxicity to biocompatibility testing in vitro: cell adhesion molecule expression defines a new set of parameters”. J Mater Sci Mater Med. Vol. 8. 1997. pp. 835-41. DOI: https://doi.org/10.1023/A:1018541419055

J. Wen, H. Q. Mao, W. Li, K. Y. Lin, K. W. Leong. “Biodegradable polyphosphoester micelles for gene delivery”. J Pharm Sci. Vol. 93. 2004. pp. 2142-57. DOI: https://doi.org/10.1002/jps.20121

G. Ciapetti, P. Roda, L. Landi, A. Facchini, A. Pizzoferrato. “In vitro methods to evaluate metal-cell interactions”. Int J Artif Organs. Vol. 15. 1992. pp. 62-66. DOI: https://doi.org/10.1177/039139889201500111

I. H. Kalfas. “Principles of bone healing”. Neurosurg Focus. Vol. 10. 2001. Article 1. DOI: https://doi.org/10.3171/foc.2001.10.4.2

C. Schiller, M. Epple. “Carbonated calcium phosphates are suitable pH-stabilising. fillers for biodegradable polyesters”. Biomaterials. Vol. 24. 2003. pp. 2037–2043. DOI: https://doi.org/10.1016/S0142-9612(02)00634-8

T. Serizawa, T. Tateishi, M. Akashi. “Cell-compatible properties of calcium carbonates and hydroxyapatite deposited on ultrathin poly(vinyl alcohol)-coated polyethylene films”. J Biomater Sci Polym. Vol. 14. 2003. pp. 653-663. DOI: https://doi.org/10.1163/156856203322274914

G. Guillemin, J. Patat, J. Fournié, M. Chetail. “The use of coral as a bone graft substitute”. J Biomed Mater Res. Vol. 21. 1987. pp. 557-567. DOI: https://doi.org/10.1002/jbm.820210503

M. Richard, E. Aguado, G. Daculsi, M. Cottrel. “Ultrastructural and electron diffraction of the boneceramic interfacial zone in coral and biphasic calcium phosphate implants”. Calcif Tissue Int. Vol. 62. 1998. pp. 437-442. DOI: https://doi.org/10.1007/s002239900456

F. Roux, D. Brasnu, B. Loty, B. Georges, G. Guillemin. “Madreporic coral: a new bone graft substitute for cranial surgery”. J Biomed Mater Res. Vol. 69. 1988. pp. 510-513. DOI: https://doi.org/10.3171/jns.1988.69.4.0510

J. Ouhayoun, A. Shabana, S. Issakian. “Histological evaluation of natural coral skeleton as a grafting material in miniature swine mandible”. J Mater Sci Med. Vol. 2. 1992. pp. 222- 228. DOI: https://doi.org/10.1007/BF00713454

R. Kania, A. Meunier, M. Hamadouche, L. Sedel, H. Petite. “Addition of fibrin sealant to ceramic promotes bone repair: long term study in rabbit femoral defect model”. J Biomed Mater Res (Appl Biomater). Vol. 43. 1998. pp. 38-45. DOI: https://doi.org/10.1002/(SICI)1097-4636(199821)43:1<38::AID-JBM4>3.0.CO;2-N

American Society for Testing and Materials, 1975, ASTM C595, Standard Specifications for Blended Hydraulic Cements. Annual Book of ASTM Standards, Part 13, ASTM, Philadelphia, PA p. 353.

S. L. Meyers. Effect of Carbon Dioxide on Hydrated Cement and Concrete. Rock Products 1949, pp. 96-98.

G. W. Whitman, R.P. Russell, W.J. Altieri. “Effect of Hydrogen Ion Concentration on the Submerged Corrosion of Steel”. Ind. Eng. Chem. Vol. 16. 1924. pp. 665-670. DOI: https://doi.org/10.1021/ie50175a002

J. R. Mosley. “Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review”. J Rehabil Res Develop. Vol. 37. 2000. pp. 189–99.

O. Akhouayri, M.H. Lafage-Proust, A. Rattner, N. Laroche, A Caillot- Augusseau, C. Alexandre, L. Vico. “Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in threedimensional contractile collagen gels”. J Cell Biochem. Vol. 76. 2000. pp. 217–230. DOI: https://doi.org/10.1002/(SICI)1097-4644(20000201)76:2<217::AID-JCB6>3.0.CO;2-K

S. W. Suh, J. Y. Shin, J. Kim, C. H. Beak, D. I. Kim, H. Kim, S. S. Jeon, I.W. Choo. “Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique”. ASAIO J. Vol. 48. 2002. pp. 460-464. DOI: https://doi.org/10.1097/00002480-200209000-00003

S. H. Oh, S. G. Kang, E. S. Kim, S. H. Cho, J. H. Lee. “Fabrication and characterization of hydrophilic poly (lactic-co-glycolic acid)/poly (vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method”. Biomaterials. Vol. 24. 2003. pp. 4011-4021. DOI: https://doi.org/10.1016/S0142-9612(03)00284-9

Descargas

Publicado

2006-08-11

Cómo citar

Gallego, D., López, L. E., Hansford, . D., & Klemas, J. (2006). El cemento portland y su potencial uso en ingeniería de tejido óseo. Fase I: estudios de biocompatibilidad-efectos del hidróxido de calcio. Revista Facultad De Ingeniería Universidad De Antioquia, (37), 21–30. https://doi.org/10.17533/udea.redin.343394