Análisis de elementos finitos del tendón flexor profundo durante un protocolo de rehabilitación pasiva

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210528

Palabras clave:

método de elementos finitos, rehabilitación postoperatoria, rango de movimiento

Resumen

El objetivo del presente estudio fue crear un modelo específico de la mano para simular la rehabilitación pasiva en el dedo índice, cuantificando la excursión y la tensión experimentada del tendón flexor profundo (FP). El modelo computacional utilizado se creó a partir de un conjunto de datos disponibles en la biblioteca de Embodi3d. La segmentación, la reconstrucción tridimensional y el modelado de las estructuras se realizaron utilizando Materialise Mimics y Rhino3D. La excursión y los valores de tensión presentes en el modelo se calcularon en ANSYS. El tendón FP presenta una excursión de 10,1 mm durante la flexión postoperatoria pasiva. Los valores de tensión más altos se observaron entre las superficies de contacto entre las poleas y el tendón. En particular, la polea A1 exhibió la tensión principal máxima del modelo con 58,7 MPa. La polea A3 mostró el mismo patrón de distribución de tensiones que la polea A1, pero con los valores más bajos. La excursión del tendón obtenida es consistente con los resultados reportados en literatura que varían de 8 a 11 mm. Los valores de tensión encontrados explican la importancia del mecanismo de poleas que mantiene el tendón FP unido al hueso durante el rango de movimiento experimentado.  El modelo propuesto puede potencialmente utilizarse en la evaluación de nuevas propuestas de dispositivos médicos en el campo de la cirugía reconstructiva de la mano.

|Resumen
= 640 veces | PDF (ENGLISH)
= 373 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Oliver Grimaldo Ruiz, Politécnico de Turín

Investigador, Laboratorio de Nanomecánica Bioinspirada "Giuseppe Maria Pugno", Departamento de Geotecnia Estructural e Ingeniería de Construcción (DISEG).

Mariana Rodríguez Reinoso, Politécnico de Turín

Estudiante de Doctorado, Departamento de Geotecnia Estructural e Ingeniería de Construcción (DISEG).

Cecilia Surace, Politécnico de Turín

Profesor Asociado, Departamento de Geotecnia Estructural e Ingeniería de Construcción (DISEG).

Citas

R. Singh, B. Rymer, P. Theobald, and P. Thomas, “A review of current concepts in flexor tendon repair: physiology, biomechanics, surgical technique and rehabilitation.” Orthopedic reviews, vol. 7, no. 4, Dec. 28, 2015. [Online]. Available: https://doi.org/10.4081/or.2015.6125

G. Riley, “Chronic tendon pathology: molecular basis and therapeutic implications,” Expert Reviews in Molecular Medicine, vol. 7, no. 5, Mar. 30, 2005. [Online]. Available: https://doi.org/10.1017/S1462399405008963

D. generale della programmazione sanitaria, “Rapporto annuale sull’attività di ricovero ospedaliero(dati sdo 2019),” Ministero della Salute, Roma, IT, Tech. Rep., Jan. 2021. [Online]. Available: https://www.salute.gov.it/portale/documentazione/p6_2_2_1.jsp?lingua=italiano&id=3002

A. Momeni, E. Grauel, and J. Chang, “Complications after flexor tendon injuries,” Hand Clinics, vol. 26, no. 2, May. 2010. [Online]. Available: https://doi.org/10.1016/j.hcl.2009.11.004

C. S. Irwin, B. G. Parks, and K. R. Means, “Biomechanical analysis of zone 2 flexor tendon repair with a coupler device versus locking cruciate core suture,” Journal of Hand Surgery, vol. 45, no. 9, Apr. 7, 2020. [Online]. Available: https://doi.org/10.1016/j.jhsa.2020.02.015

M. Wiig and et al., “A lactoferrin-derived peptide (pxl01) for the reduction of adhesion formation in flexor tendon surgery: An experimental study in rabbits,” Journal of Hand Surgery (European Volume), vol. 36, no. 8, Jun. 23, 2011. [Online]. Available: https://doi.org/10.1177%2F1753193411410823

A. N. Nayak and et al., “A mechanical evaluation of zone ii flexor tendon repair using a knotless barbed suture versus a traditional braided suture,” Journal of Hand Surgery, vol. 40, no. 7, Jun. 3, 2015. [Online]. Available: https://doi.org/10.1016/j.jhsa.2015.04.009

C. J. Dy, A. Hernandez, Y. Ma, T. R. Roberts, and A. Daluiski, “Complications after flexor tendon repair: A systematic review and meta-analysis,” Journal of Hand Surgery, vol. 37, no. 3, Feb. 10, 2012. [Online]. Available: https://doi.org/10.1016/j.jhsa.2011.11.006

C. Dennis and et al., “Suture materials - current and emerging trends,” Journal of Biomedical Materials Research, vol. 104, no. 6, Feb. 10, 2016. [Online]. Available: https://doi.org/10.1002/jbm.a.35683

J. A. Greenberg and R. H. Goldman, “Barbed suture: A review of the technology and clinical uses in obstetrics and gynecology,” Reviews in Obstetrics & Gynecology, vol. 6, no. 3, 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002186/

F. Wu, M. Nerlich, and D. Docheva, “Tendon injuries: Basic science and new repair proposals,” EFORT Open Reviews, vol. 2, no. 7, Jul. 17, 2017. [Online]. Available: https://doi.org/10.1302/2058-5241.2.160075

S. Thomopoulos, W. C. Parks, D. B. Rifkin, and K. A. Derwin, “Mechanisms of tendon injury and repair,” Journal of Orthopaedic Research, vol. 33, no. 6, Jan. 29, 2015. [Online]. Available: https://doi.org/10.1002/jor.22806

L. M. Galatz, L. Gerstenfeld, E. Heber, and S. A. Rodeo, “Tendon regeneration and scar formation: The concept of scarless healing,” Journal of Orthopaedic Research, vol. 33, no. 6, Feb. 11, 2015. [Online]. Available: https://doi.org/10.1002/jor.22853

B. Zafonte, D. Rendulic, and R. M. Szabo, “Flexor pulley system: Anatomy, injury, and management,” Journal of Hand Surgery, vol. 39, no. 12, Dec. 1, 2014. [Online]. Available: https://doi.org/10.1016/j.jhsa.2014.06.005

A. Sapienza, H. K. Yoon, R. Karia, and S. K. Lee, “Flexor tendon excursion and load during passive and active simulated motion: A cadaver study,” Journal of Hand Surgery (European Volume), vol. 38, no. 9, 2013. [Online]. Available: https://doi.org/10.1177%2F1753193412469128

K. F. Lutsky, E. L. Giang, and J. L. Matzon, “Flexor tendon injury, repair and rehabilitation,” Orthopedic Clinics of North America, vol. 46, no. 1, Jan. 2015. [Online]. Available: https://doi.org/10.1016/j.ocl.2014.09.004

H. M. Starr, M. Snoddy, K. E. Hammond, and J. G. Seiler, “Flexor tendon repair rehabilitation protocols: A systematic review,” Journal of Hand Surgery, vol. 38, no. 9, Sep. 1, 2013. [Online]. Available: https://doi.org/10.1016/j.jhsa.2013.06.025

A. Chesney, A. Chauhan, A. Kattan, F. Farrokhyar, and A. Thoma, “Systematic review of flexor tendon rehabilitation protocols in zone ii of the hand,” Journal of the American Society of Plastic Surgeons, vol. 127, no. 4, Apr. 2011. [Online]. Available: https://journals.lww.com/plasreconsurg/Abstract/2011/04000/Systematic_Review_of_Flexor_Tendon_Rehabilitation.23.aspx

E. George, P. Liacouras, F. J. Rybicki, and D. Mitsouras, “Measuring and establishing the accuracy and reproducibility of 3d printed medical models,” RadioGraphics, vol. 37, no. 5, Aug. 11, 2017. [Online]. Available: https://doi.org/10.1148/rg.2017160165

A. F. Hernández and et al., “Application of 3d modeling methodology using ct scans for numerical analysis,” Revista facultad de ingeniería Universidad de Antioquia, no. 72, Sep. 2014. [Online]. Available: https://revistas.udea.edu.co/index.php/ingenieria/article/view/15747

V. Chulvi, D. Cebrian, . Sancho, and R. Vidal, “Automated design of customized implants,” Revista facultad de ingeniería Universidad de Antioquia, no. 68, Sep. 2013. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302013000300010

(2019, Oct. 8,) Hand bst 3 1.0.0. Embodi 3D. [Online]. Available: https://www.embodi3d.com/files/file/28972-hand-bst-3/

N. Wake and et al., “Creating patient-specific anatomical models for 3d printing and ar/vr: a supplement for the 2018 radiological society of north america(rsna)hands-on course,” 3D Printing in Medicine, vol. 5, no. 17, Dec. 30, 2019. [Online]. Available: https://threedmedprint.biomedcentral.com/articles/10.1186/s41205-019-0054-y

G. Mitsionis and et al., “Feasibility of partial a2 and a4 pulley excision: Residual pulley strength,” Journal of Hand Surgery (European Volume), vol. 25, no. 1, Feb. 1, 2000. [Online]. Available: https://journals.sagepub.com/doi/10.1054/jhsb.1999.0332

T. Krauthammer, “Accuracy of the finite element method near a curved boundary,” Computers & Structures, vol. 10, no. 6, Dec. 1979. [Online]. Available: https://doi.org/10.1016/0045-7949(79)90061-0

J. Y. Rho, L. Kuhn, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Medical Engineering & Physics, vol. 20, no. 2, Mar. 1998. [Online]. Available: https://doi.org/10.1016/S1350-4533(98)00007-1

H. R. Screen, D. A. Lee, D. L. Bader, and J. C. Shelton, “An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 218, no. 2, Feb. 1, 2004. [Online]. Available: https://doi.org/10.1243%2F095441104322984004

R. W. Ogden. (1997) Non-linear elastic deformations. Dover Publications, Inc. [Online]. Available: https://n9.cl/6xz7y

F. Elza, L. Joana, and B. Luisa, “Human femur assessment using isotropic and orthotropic materials dependent of bone density,” Polytechnic Institute of Bragança, Bragança, PT, 2009. [Online]. Available: https://bibliotecadigital.ipb.pt/handle/10198/1664

L. L. Vignoli and P. P. Kenedi, “Bone anisotropy - analytical and finite element analysis,” Latin American Journal of Solids and Structures, vol. 13, no. 1, Jan. 2016. [Online]. Available: https://doi.org/10.1590/1679-78251814

C. Santiuste, M. Rodríguez, E. Giner, and H. Miguélez, “The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone,” Composite Structures, vol. 116, 2014. [Online]. Available: https://doi.org/10.1016/j.compstruct.2014.05.031

T. A. Carniel and E. A. Fancello, “A transversely isotropic coupled hyperelastic model for the mechanical behavior of tendons,” Journal of Biomechanics, vol. 54, Mar. 21, 2017. [Online]. Available: https://doi.org/10.1016/j.jbiomech.2017.01.042

D. Moratal. (2012) Finite element analysis - from biomedical applications to industrial developments. InTech. [Online]. Available: https://n9.cl/0axol

E. F. Morgan, G. U. Unnikrisnan, and A. I. Hussein, “Bone mechanical properties in healthy and diseased states,” Annual Review of Biomedical Engineering, vol. 20, Jun. 2018. [Online]. Available: https://doi.org/10.1146/annurev-bioeng-062117-121139

S. D. Rawson, L. Margetts, J. Wong, and S. H. Cartmell, “Sutured tendon repair; a multi-scale finite element model,” Biomech Model Mechanobio, vol. 14, May. 20, 2014. [Online]. Available: https://doi.org/10.1007/s10237-014-0593-5

W. F. Mao, Y. F. Wu, Y. L. Zhou, and J. B. Tang, “A study of the anatomy and repair strengths of porcine flexor and extensor tendons: are they appropriate experimental models?” Journal of Hand Surgery (European Volume), vol. 36, no. 8, Jul. 18, 2011. [Online]. Available: https://doi.org/10.1177%2F1753193411414117

R. G. Rodríguez and et al., “Biomechanical analysis of damaged intervertebral disc using reflective photoelasticity,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 78, Mar. 2016. [Online]. Available: http://www.scielo.org.co/scielo.php?pid=S0120-62302016000100010&script=sci_arttext&tlng=en

J. F. Weber, A. M. Agur, A. Y. Fattah, K. D. Gordon, and M. L. Oliver, “Tensile mechanical properties of human forearm tendons,” Journal of Hand Surgery (European Volume), vol. 40, no. 7, May. 4, 2015. [Online]. Available: https://doi.org/10.1177%2F1753193415584715

K. Kursa, L. Lattanza, E. Diao, and D. Rempel, “In vivo flexor tendon forces increase with finger and wrist flexion during active finger flexion and extension,” Journal of Orthopaedic Research, vol. 24, no. 4, Apr. 2006. [Online]. Available: https://doi.org/10.1002/jor.20110

Y. Liu and et al., “Objective evaluation of hand rom and motion quality based on motion capture and brunnstrom scale,” IEEE/ASME (AIM) International Conference on Advanced Intelligent Mechatronics, Hong Kong, CN, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8868793

U. C. Ugbolue, W. H. Hsu, R. J. Goitz, and Z. M. Li, “Tendon and nerve displacement at the wrist during finger movements,” Clinical Biomechanics, vol. 20, no. 1, Jan. 1 2005. [Online]. Available: https://doi.org/10.1016/j.clinbiomech.2004.08.006

Z. M. Li, S. Dun, D. A. Harkness, and T. L. Brininger, “Motion enslaving among multiple fingers of the human hand,” Human Kinetics Journals, vol. 8, no. 1, 2004. [Online]. Available: https://doi.org/10.1123/mcj.8.1.1

J. A. Parellada, A. R. Balkissoon, C. W. Hayes, and W. F. Conway, “Bowstring injury of the flexor tendon pulley system: Mr imaging,” AJR American Journal of Roentgenology, vol. 167, no. 2, 1996. [Online]. Available: https://www.ajronline.org/doi/10.2214/ajr.167.2.8686601

Publicado

2021-05-13

Cómo citar

Grimaldo Ruiz, O., Rodríguez Reinoso, M. ., & Surace, C. (2021). Análisis de elementos finitos del tendón flexor profundo durante un protocolo de rehabilitación pasiva. Revista Facultad De Ingeniería Universidad De Antioquia, (100), 124–132. https://doi.org/10.17533/udea.redin.20210528