CFD modeling and modal analysis for research of energy harvesters by wind loads




Simulation models, CFD simulation, wind power, vibration


This work aims at coupling computational fluid dynamics (CFD) and modal analysis (FEM) to simulate energy harvesting of wind loads to produce electrical energy by piezoelectric effect. To complement this objective, CFD-FEM simulation was performed by means of SolidWorks® 2021 add-ins, starting from the generation of the virtual model, computational domain definition, and imposition of wind loads, boundary conditions, and model discretization, by means of a mesh comprising a total of 84 709 nodes and 50 157 high order quadratic elements of 1 mm size and finally a mesh calibration was performed. The results showed that the section near the clamping base concentrated the highest pressures, regardless of the simulated velocity (3 to 21 m/s). The maximum velocity caused a pressure over the impact zone of 101 716 Pa, a relative pressure of 391.75 Pa, and shear stress of 4.78 Pa. The natural frequencies of vibration using the CFD output, range from 69 to 99 Hz. The direction of wind action is defined as the direction of piezoelectric placement, specifically near the base where the maximum effective voltage output (6.79 V) is obtained which, with an external resistance of 10 and 20 MΩ, produces an electrical power of 4.62 and 2.31 µW, respectively.

= 235 veces | PDF
= 175 veces|


Download data is not yet available.

Author Biographies

Carlos Arturo Montes-Rodríguez, Universidad Técnica de Manabí

Mechanic Engineer

Miguel Herrera Suárez, Universidad Técnica de Manabí

PhD. Agricultura Sciences


International Energy Agency. (2019) World energy statistics. [Ebrary version]. [Online]. [Online]. Available:

J. Bonilla, L. Roca, A. D. L. Calle, and S. Dormido, “Modelo dinámico de un recuperador de gases -sales fundidas para una planta termosolar híbrida de energías renovables,” Revista Iberoamericana de Automática e Informática industria, vol. 14, no. 1, Jan. 05, 2017. [Online]. Available:

P. Soto, L. Domínguez-Inzunza, and W. Rivera, “Preliminary assessment of a solar absorption air conditioning pilot plant,” Case Studies in Thermal Engineering, vol. 14, Sep. 2018. [Online]. Available:

R. A. López-Meraz, L. Hernández-callejo, L. O. Jamed-Boza, J. A. D. Angél-Ramos, J. J. Marín-Hernández, and et al., “Gestión de potencia eléctrica en una microrred analizando arreglos fotovoltaicos y un sistema turbina-generador,” Revista facultad de ingeniería, no. 104, Jul-Sep 2022. [Online]. Available:

P. Peña-Carro, O. Izquierdo-Monge, L. Hernández-Callejo, and G. Martín-Jiménez, “Estudio e integración de pequeños aerogeneradores en una microrred periurbana,” Revista facultad de ingeniería, no. 104, Jul-Sep, 2022. [Online]. Available:

H. Takhedmit, Z. Saddi, A. Karami, P. Basset, and L. Cirio, “Electrostatic vibration energy harvester with 2.4-ghz cockcroft–walton rectenna start-updispositif de récupération d’énergie vibratoire par transduction électrostatique, pré-chargé par une rectenna cockcroft–walton à 2,4 ghz,” Comptes Rendus Physique, vol. 18, no. 2, Feb. 2017. [Online]. Available:

X. Guo, Y. Zhang, K. Fan, C. Lee, and F. Wang, “A comprehensive study of non-linear air damping and “pull-in” effects on the electrostatic energy harvesters,” Comptes Rendus Physique, vol. 203, Jan. 01, 2020. [Online]. Available:

T. Yildirim, M. H. Ghayesh, W. Li, and G. Alici, “A review on performance enhancement techniques for ambient vibration energy harvesters,” Renewable and Sustainable Energy Reviews, vol. 71, May. 2017. [Online]. Available:

D. Li, Y. Wu, A. Da-Ronch, and J. Xiang, “Energy harvesting by means of flow-induced vibrations on aerospace vehicles,” Progress in Aerospace Sciences, vol. 86, Oct. 2016. [Online]. Available:

M. Evans, L. Tang, K. Tao, and K. Aw, “Design and optimisation of an underfloor energy harvesting system,” Sensors and Actuators A: Physical, no. 285, Jan. 01, 2019. [Online]. Available:

Z. Xuejuan, X. Hongjun, and S. Zhifei, “Piezoelectric energy harvesting from vehicles induced bending deformation in pavements considering the arrangement of harvesters,” Applied Mathematical Modelling, vol. 77, no. 1, Jan. 2020. [Online]. Available:

H. Elahi, M. Eugeni, and P. Gaudenzi, “Electromechanical degradation of piezoelectric patches,” Analysis and Modelling of Advanced Structures and Smart Systems, vol. 81, Nov. 28, 2017. [Online]. Available:

C. D. Sousa and L. Manganiello, “Review: Piezoelectric sensors applications in the detection of contaminants in food,” Revista de ingeniería UC, vol. 25, no. 3, Dic. 2018. [Online]. Available:

A. Cortés-Hernández, E. M. Ensaztiga-Pérez, and M. A. Pineda-Flores, “Propuesta de diseño de un piso generador de energía eléctrica,” B. A. thesis, Escuela suoperior de ingeniería mecánica y eléctrica., México D. F., México, 2010.

J. M. McCarthy, S. Watkins, A. Deivasigamani, and S. J. John, “Fluttering energy harvesters in the wind: A review,” Communications WeekJournal of Sound and Vibration, vol. 361, Jan. 20, 2016. [Online]. Available: 043

H. Li, D. Liu, J. Wan, X. Shang, and M. R. Hajj, “Broadband bimorph piezoelectric energy harvesting by exploiting bending-torsion of l-shaped structure,” Energy Conversion and Management, vol. 206, Feb. 15, 2020. [Online]. Available:

M. Hamlehdar, A. Kasaeian, and M. R. Safaei, “Energy harvesting from fluid flow using piezoelectrics: A critical review,” Renewable Energy, vol. 143, Dec. 2019. [Online]. Available:

J. Liu, H. Zuo, W. Xia, Y. Luo, D. Yao, and et al., “Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode, ” Microelectronic Engineering, vol. 231, Jul. 15, 2020. [Online]. Available:

Z.-Q. Lu, J. Chen, H. Ding, and L.-Q. Chen, “Two-span piezoelectric beam energy harvesting,” International Journal of Mechanical Sciences, vol. 175, Jun. 01, 2020. [Online]. Available:

A. I. Aquino, J. K. Calautit, and B. R. Hughes, “Evaluation of the integration of the wind-induced flutter energy harvester (wifeh) into the built environment: Experimental and numerical analysis,” Communications Week, vol. 207, Dec. 01, 2017. [Online]. Available:

M. Ghasemian, Z. N. Ashrafi, and A. Sedaghat, “A review on computational fluid dynamic simulation techniques for darrieus vertical axis wind turbines,” Energy Conversion and Management, vol. 149, Oct. 01, 2017. [Online]. Available:

C. Yonglieng, N. Jingwen, and W. Jie, “Wake effect on a semi-active flapping foil based energy harvester by a rotating foil,” Computers & Fluids, vol. 160, Jan. 04, 2018. [Online]. Available:

J. Vives, M. Massanés, J. J. de Felipe, and L. Sanmiquel, “Computational fluid dynamics (cfd) study to optimize the auxiliary ventilation system in an underground mine.” Dyna, vol. 89, no. 221, Sep. 14, 2022. [Online]. Available:

C. Montes-Rodríguez, J. A. Pérez-Rodríguez, and M. Herrera-Suárez, “Análisis del estado actual de la cosecha de energía por medio de vibraciones producidas por cargas de viento,” Dominio de las ciencias, vol. 7, no. 04, 2021. [Online]. Available:

M. Rajarathinam and S. F. Ali, “Energy generation in a hybrid harvester under harmonic excitation,” Energy Conversion and Management, vol. 155, Jan. 01, 2018. [Online]. Available:

V. Jamadar, P. Pingle, and S. Kanase, “Possibility of harvesting vibration energy from power producing devices: A review,” in International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 2016, pp. 496–503.

B. Maamer, A. Boughamoura, A. M. F. El-Bab, L. A. Francis, and F. Tounsi, “A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes,” Energy Conversion and Management, vol. 199, Nov. 01, 2019. [Online]. Available:

A. Martín-Malmcrona, “Aplicaciones del efecto piezoeléctrico para la generación de energía,” B. A. thesis, Universidad Carlos III de Madrid, Madrid, España, 2018.

E. Morán-Tejeda, J. Bazo, J. I. López-Moreno, E. Aguilar, C. Azorín-Molina, and et al., “Climate trends and variability in ecuador (1966–2011),” International Journal of Climatology, vol. 36, no. 11, Jan. 15, 2016. [Online]. Available:

E. C. Vega and J. C. Jara, “Estimation of crop reference evapotranspiration fro two locatioons (coastal and andean region) of ecuador,” Engenharia Agrícola, vol. 29, no. 3, Sep. 2009. [Online]. Available:

S. Vicente-Cerrano, E. Aguilar, R. Martínez, N. Martín-Hernández, C. Azorín-Molina, and et al., “The complex influence of enso on droughts in ecuador,” Climate Dynamics volume, vol. 48, Mar. 26, 2017. [Online]. Available:

A. C. Nuñez-Basantes and E. Higueras-García, “Altitude, climate variables and people’s length of stay in ecuador squares,” Brazilian magazine of urban management, vol. 10, no. 02, May-Ago. 2018. [Online]. Available:

D. Jijón, J. Constante, G. Villacreses, and T. Guerrero, “Modelling of performance of 2 mw wind turbines in ecuador: Electric-wind potential estimación del rendimiento de aerogeneradores de 2 mw en el ecuador: Potencial eolo-eléctrico,” Energia, no. 15, Jul. 18, 1996. [Online]. Available:

X. Shan, H. T. and D. Chen, and T. Xie, “A curved panel energy harvester for aeroelastic vibration,” Applied Energy, vol. 249, Sep. 01, 2019. [Online]. Available:

A. Abdelkefi, “Aeroelastic energy harvesting: A review,” International Journal of Engineering Science, vol. 100, Mar. 2016. [Online]. Available:

S. Sojan and R. Kulkarni, “A comprehensive review of energy harvesting techniques and its potential applications,” International Journal of Computer Applications, vol. 139, no. 3, Apr. 2016. [Online]. Available:




How to Cite

Montes-Rodríguez, C. A., & Herrera-Suárez, M. (2022). CFD modeling and modal analysis for research of energy harvesters by wind loads. Revista Facultad De Ingeniería Universidad De Antioquia.




Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 > >> 

You may also start an advanced similarity search for this article.