Todo lo que necesitas saber antes de trabajar con bombas como turbina
DOI:
https://doi.org/10.17533/udea.redin.20240410Palabras clave:
Bombas, Turbinas, Economía de la energía, Fuente de energía renovable, vibraciónResumen
La generación de energía eléctrica es uno de los temas más relevantes de las últimas décadas. Esta energía se puede obtener mediante el uso de fuentes no renovables, fuentes renovables y especialmente el uso
de fuentes renovables no convencionales. Dentro de esta última categoría podemos clasificar el uso de bombas como turbina. Las bombas son máquinas hidráulicas diseñadas para el gasto energético. Gracias a que son máquinas reversibles, las bombas a modo de turbinas se pueden utilizar en su modo de funcionamiento inverso y extraer energía valiosa del fluido. Sin embargo, este uso puede generar algunos inconvenientes en su proceso, que van desde el montaje, caracterización y fenómenos hidrodinámicos. Este artículo proporciona los conceptos teóricos básicos y las curvas de funcionamiento que normalmente se utilizan para bombas como turbinas. Además de un abordaje global de los fenómenos hidrodinámicos asociados al uso de bombas como turbinas, tal
es el caso de la vibración, la cavitación y la pérdida rotatoria. Todo este panorama se complementa con algunos ejemplos de aplicación y análisis económicos que ratifican las ventajas de utilizar bombas como turbinas como fuente confiable de generación de energía.
Descargas
Citas
K. Goldsmith, Economic and Financial Analysis of Hydropower Projects, 6th ed., Norwegian Institute of Technology, Ed. Trondheim, Norway: Norwegian Institute of Technology, 1993.
E. I. A. EIA, “U.S. Energy Information Administration (EIA),” 2022. [Online]. Available: https://www.eia.gov/
Enerdata, “Renewables in Electricity Production | Statistics Map by Region | Enerdata,” 2018. [Online]. Available: https://yearbook.enerdata.net/renewables/renewable-in-electricity-production-share.html
S. O. Negro, F. Alkemade, and M. P. Hekkert, “Why does renewable energy diffuse so slowly? A review of innovation system problems,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3836–3846, 2012. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1364032112002262
A. Zerrahn, W.-P. P. Schill, and C. Kemfert, “On the economics of electrical storage for variable renewable energy sources,” European Economic Review, vol. 108, pp. 259–279, 9 2018. [Online]. Available: https://doi.org/10.1016/j.euroecorev.2018.07.004
A. A. Williams, “Pumps as turbines for low cost micro hydro power,” Renewable Energy, vol. 9, no. 1-4 SPEC. ISS., pp. 1227–1234, 1996.
A. Beguin, C. Nicolet, B. Kawkabani, and F. Avellan, “Virtual power plant with pumped storage power plant for renewable energy integration,” Proceedings - 2014 International Conference on Electrical Machines, ICEM 2014, pp. 1736–1742, 2014.
A. Carravetta, S. Derakhshan Houreh, and H. M. Ramos, Pumps as Turbines, ser. Springer Tracts in Mechanical Engineering, 1, Ed. Cham: Springer International Publishing, 2018. [Online]. Available: http://link.springer.com/10.1007/978-3-319-67507-7
C. Ortiz Motta, J. Sabogal Aguilar, E. Hurtado Aguirre, D. C. Ortiz Motta, J. Sabogal Aguilar, E. Hurtado Aguirre, C. Ortiz Motta, J. Sabogal Aguilar, E. Hurtado Aguirre, D. C. Ortiz Motta, J. Sabogal Aguilar, and E. Hurtado Aguirre, “Una revisión a la reglamentación e incentivos de las energías renovables en Colombia,” Revista Facultad de Ciencias Económicas: Investigación y Reflexión, vol. 20, no. 2, pp. 55–67, 2012.
T. Agarwal, “Review of Pump as Turbine (PAT) for Micro-Hydropower,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 11, p. 163, 2012. [Online]. Available: https://www.ijetae.com/
J.-P. P. Franc, C. Rebattet, and A. Coulon, “An experimental investigation of thermal effects in a cavitating inducer,” Journal of Fluids Engineering, Transactions of the ASME, vol. 126, no. 5, pp. 716–723, 2004. [Online]. Available: http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430042
K. H. Lee, J. H. Yoo, and S. H. Kang, “Experiments on cavitation instability of a two-bladed turbopump inducer,” Journal of Mechanical Science and Technology, vol. 23, no. 9, pp. 2350–2356, 2009.
Q. Jiang, Y. Heng, X. Liu, W. Zhang, G. Bois, and Q. Si, “A review of design considerations of centrifugal pump capability for handling inlet gas-liquid two-phase flows,” Energies, vol. 12, no. 6, 2019. [14] P. Finnegan and J. Sorfield, “Gm Shrum Generating Station G3 Runner Failure Technical Analysis and Recommendations,” BC Hydro, Vanouver, Tech. Rep. 3698500, 9 2008. [Online]. Available: http://www.bchydro.com/
V. Hasmatuchi, M. Farhat, S. Roth, F. Botero, and F. F. F. Avellan, “Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode,” Journal of Fluids Engineering, vol. 133, no. 5, p. 051104, 5 2011. [Online]. Available: https://doi.org/10.1115/1.4004088
Y. Zhang and Y. Wu, “A review of rotating stall in reversible pump turbine,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 231, no. 7, pp. 1181–1204, 2017.
Y. Tsujimoto, “Cavitation Instabilities in Inducers,” NATO Science and Technology Organization, vol. 8, no. 2006, pp. 8–26, 2006. [Online]. Available: https://tinyurl.com/4y8fmsxa
A. Gupta, J. T. Kshirsagar, N. H. Mostafa, and M. A. Boraey, “Numerical and Experimental Investigation of Cavitation in axial Pumps,” in Volume 1: Symposia, Parts A and B. Sharm El-Sheikh, Egypt: ASMEDC, 1 2005, pp. 1535–1541. [Online]. Available: https://asmedigitalcollection.asme.org/FEDSM/proceedings/FEDSM2005/41987/1535/312800
F. E. Sierra Vargas, A. F. Sierra Alarcón, and C. A. Guerrero Fajardo, “Pequeñas y microcentrales hidroeléctricas: alternativa real de generación eléctrica.” Informador Técnico, vol. 75, pp. 8–11, 12 2011. [Online]. Available: http://revistas.sena.edu.co/index.php/inf_tec/article/view/22
E. Henao Villa, “Evaluación técnica del uso de máquinas revesibles en micro generación hidroeléctrica,” Universidad del Valle, Santiago de Cali, Tech. Rep. 4, 2016.
O. Fecarotta and A. McNabola, “Optimal Location of Pump as Turbines (PATs) in Water Distribution Networks to Recover Energy and Reduce Leakage,” Water Resources Management, vol. 31, no. 15, pp. 5043–5059, 2017.
M. Kapsali and J. S. Anagnostopoulos, “Investigating the role of local pumped-hydro energy storage in interconnected island grids with high wind power generation,” Renewable Energy, vol. 114, pp. 614–628, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.renene.2017.07.014
A. Morabito and P. Hendrick, “Pump as turbine applied to micro energy storage and smart water grids: A case study,” Applied Energy, vol. 241, no. March, pp. 567–579, 5 2019. [Online]. Available: https://doi.org/10.1016/j.apenergy.2019.03.018
P. Singh and F. Nestmann, “Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines,” Experimental Thermal and Fluid Science, vol. 35, no. 1, pp. 121–134, 1 2011. [Online]. Available: http://dx.doi.org/10.1016/j.expthermflusci.2010.08.013
M. Stefanizzi, T. Capurso, M. Torresi, G. Pascazio, S. Ranaldo, S. M. Camporeale, B. Fortunato, and R. Monteriso, “Development of a 1-D Performance Prediction Model for Pumps as Turbines,” Proceedings, vol. 2, no. 11, p. 682, 2018.
M. A. El-Naggar, “A One-Dimensional Flow Analysis for the Prediction of Centrifugal Pump Performance Characteristics,” International Journal of Rotating Machinery, vol. 2013, no. 1, pp. 1–19, 2013. [Online]. Available: http://www.hindawi.com/journals/ijrm/2013/473512/
M. Binama, W. T. Su, X. B. Li, F. C. Li, X. Z. Wei, and S. An, “Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review,” Renewable and Sustainable Energy Reviews, vol. 79, no. February, pp. 148–179, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2017.04.071
F. G. Chapallaz JM Eichenberg P, J.-M. Chapallaz, P. Eichenberg, and G. Fisher, Manual on Pumps Used as Turbines, 1st ed. Lengerich: MHPG, 1992, vol. 11, no. ISBN 3-528-02069-5.
U. Ješe, “Numerical study of pump-turbine instabilities : pumping mode off-design conditions,” Ph.D. dissertation, UNIVERSITÉ GRENOBLE ALPES, 2015. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01272738
J. D. Villegas Jiménez, “Numerical simulations on a centrifugal pump operating in turbine mode,” Ph.D. dissertation, EAFIT University, 2010.
A. J. Stepanoff, Centrifugal and Axial Flow Pumps: Theory, Design, and Application. Krieger Publishing Company, 1957. [Online]. Available: http://books.google.com.co/books?id=mz9GAAAAYAAJ
C. G. Rodriguez, E. Egusquiza, and I. F. Santos, “Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine,” Journal of Fluids Engineering, vol. 129, no. 11, p. 1428, 2007. [Online]. Available: http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1432707
P. Singh and F. Nestmann, “An optimization routine on a prediction and selection model for the turbine operation of centrifugal pumps,” Experimental Thermal and Fluid Science, vol. 34, no. 2, pp. 152–164, 2 2010. [Online]. Available: http://dx.doi.org/10.1016/j.expthermflusci.2009.10.004
S.-S. S. Yang, S. Derakhshan, and F.-Y. Y. Kong, “Theoretical, numerical and experimental prediction of pump as turbine performance,” Renewable Energy, vol. 48, pp. 507–513, 12 2012. [Online]. Available: http://dx.doi.org/10.1016/j.renene.2012.06.002
V. A. Patel, S. V. Jain, K. H. Motwani, and R. N. Patel, “Numerical optimization of guide vanes and reducer in pump running in turbine mode,” Procedia Engineering, vol. 51, no. NUiCONE 2012, pp. 797–802, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.proeng.2013.01.114
D. R. Giosio, A. D. Henderson, J. M. Walker, P. A. Brandner, J. E. Sargison, and P. Gautam, “Design and performance evaluation of a pump-as-turbine micro-hydro test facility with incorporated inlet flow control,” Renewable Energy, vol. 78, pp. 1–6, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.renene.2014.12.027
J. A. Pérez Mesa, “Caracterización experimental de la pérdida rotacional (Rotating Stall) en una bomba centrífuga operando como turbina,” Ph.D. dissertation, EAFIT, 2015.
N. Zhang, M. Yang, B. Gao, Z. Li, and D. Ni, “Experimental and numerical analysis of unsteady pressure pulsation in a centrifugal pump with slope volute,” Journal of Mechanical Science and Technology, vol. 29, no. 10, pp. 4231–4238, 2015.
Y. Sun-Sheng, P. Singh, and H. Zhang, “Flow investigations of reverse running volute pumps with backward vanes in comparison to forward type turbine vanes,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 233, no. 1, pp. 111–131, 2019.
K. Sengpanich, E. L. Bohez, P. Thongkruer, and K. Sakulphan, “New mode to operate centrifugal pump as impulse turbine,” Renewable Energy, vol. 140, pp. 983–993, 2019. [Online]. Available: https://doi.org/10.1016/j.renene.2019.03.116
J. Deane, B. Ó Gallachóir, and E. McKeogh, “Techno-economic review of existing and new pumped hydro energy storage plant,” Renewable and Sustainable Energy Reviews, vol. 14, no. 4, pp. 1293–1302, 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1364032109002779
J. P. Veres, “Centrifugal and axial pump design and off-design performance prediction,” NASA Techincal Memorandum 106745, pp. 1–24, 1994. [Online]. Available: https://tinyurl.com/4345mp33
L. D’Agostino, L. Torre, A. Pasini, and A. Cervone, “On the Preliminary Design and Noncavitating Performance Prediction of Tapered Axial Inducers,” Journal of Fluids Engineering, vol. 130, no. 11, pp. 1–35, 2008.
A. Hosangadi and V. Ahuja, “Simulation of Cavitation Instabilities in Inducers,” in Proceedings of the 7th International Symposium on Cavitation CAV2009, no. 122. Ann Arbor, USA: CAV2009, 8 2009, pp. 1–9.
Y. Hao and L. Tan, “Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode,” Renewable Energy, vol. 127, pp. 368–376, 2018. [Online]. Available: https://doi.org/10.1016/j.renene.2018.04.072
R. Pérez Barreto, “Cavitación y materiales de construcción en las bombas centrífugas - Cavitation and constructing materials in the centrifugal pumps,” Minería y Geología, vol. 3, no. 4, pp. 114–118, 2004.
C. Rebattet, M. Wegner, P. Morel and C. Bonhomme, “Inducer design that avoids rotating cavitation,” Proceedings of the AFI Conference, p. 5, 2001. [Online]. Available: http://cremhyg.grenoble-inp.fr/version_eng/actu/afi2001.pdf
S. Barbarelli, M. Amelio, G. Florio, and N. M. Scornaienchi, “Procedure Selecting Pumps Running as Turbines in Micro Hydro Plants,” Energy Procedia, vol. 126, pp. 549–556, 2017. [Online]. Available: https://doi.org/10.1016/j.egypro.2017.08.282
M. Renzi, P. Rudolf, D. Štefan, A. Nigro, and M. Rossi, “Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study,” Applied Energy, vol. 250, no. January, pp. 665–676, 2019.
M. Renzi, Massimiliano, P. Rudolf, D. Štefan, A. Nigro, M. Rossi, “Energy recovery in oil refineries through the installation of axial Pumps-as-Turbines (PaTs) in a wastewater sewer: A case study,” Energy Procedia, vol. 158, pp. 135–141, 2019. [Online]. Available: https://doi.org/10.1016/j.egypro.2019.01.058
M. Renzi and M. Rossi, “A generalized theoretical methodology to forecast flow coefficient, head coefficient and efficiency of Pumps-as-Turbines (PaTs),” Energy Procedia, vol. 158, pp. 129–134, 2 2019. [Online]. Available: https://doi.org/10.1016/j.egypro.2019.01.057
Y. Song, H. Fan, W. Zhang, and Z. Xie, “Flow characteristics in volute of a double-suction centrifugal pump with different impeller arrangements,” Energies, vol. 12, no. 4, 2019.
V. S. Lobanoff and R. R. Ross, Centrifugal Pumps Desing & Application, 2nd ed. Houston, USA: Elsevier, 11 2010, vol. 53, no. 9. [Online]. Available: http://dx.doi.org/10.1088/1751-8113/44/8/085201
T. Capurso, M. Stefanizzi, M. Torresi, G. Pascazio, G. Caramia, S. M. Camporeale, B. Fortunato, and L. Bergamini, “How to Improve the Performance Prediction of a Pump as Turbine by Considering the Slip Phenomenon,” Proceedings, vol. 2, no. 11, p. 683, 2018.
Z. Zuo and S. Liu, “Flow-Induced Instabilities in Pump-Turbines in China,” Engineering, vol. 3, no. 4, pp. 504–511, 2017. [Online]. Available: http://dx.doi.org/10.1016/J.ENG.2017.04.010
J. Delgado, J. P. Ferreira, D. I. Covas, and F. Avellan, “Variable speed operation of centrifugal pumps running as turbines. Experimental investigation,” Renewable Energy, vol. 142, pp. 437–450, 2019. [Online]. Available: https://doi.org/10.1016/j.renene.2019.04.067
J. P. Yan, U. Seidel, and J. Koutnik, “Numerical simulation of hydrodynamics in a pump-turbine at off-design operating conditions in turbine mode,” IOP Conference Series: Earth and Environmental Science, vol. 15, no. PART 3, p. 032041, 11 2012. [Online]. Available: http://stacks.iop.org/1755-1315/15/i=3/a=032041?key=crossref.455c26f1778ea3b0d08b319d8443d69a
D. F. Tobón-Espinosa, D. A. Mejía-Ocampo, R. Moreno-Sánchez, and F. J. Botero-Herrera, “Hydrodynamic and experimental characterization of pumps as turbines,” Revista DYNA, vol. 90, pp. 124–129, 6 2023. [Online]. Available: https://doi.org/10.15446/dyna.v90n226.106010
A. H. Elbatran, O. B. Yaakob, Y. M. Ahmed, and H. M. Shabara, “Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 40–50, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2014.11.045
P.-j. Zhou, F.-j. Wang, Z.-j. Yang, and J.-g. Mou, “Investigation of rotating stall for a centrifugal pump impeller using various SGS models,” Journal of Hydrodynamics, vol. 29, no. 2, pp. 235–242, 4 2017. [Online]. Available: http://dx.doi.org/10.1016/S1001-6058(16)60733-3
S. V. Jain, A. Swarnkar, K. H. Motwani, and R. N. Patel, “Effects of impeller diameter and rotational speed on performance of pump running in turbine mode,” Energy Conversion and Management, vol. 89, pp. 808–824, 1 2015. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2014.10.036
M. Venturini, L. Manservigi, S. Alvisi, and S. Simani, “Development of a physics-based model to predict the performance of pumps as turbines,” Applied Energy, vol. 231, no. December 2017, pp. 343–354, 12 2018. [Online]. Available: https://doi.org/10.1016/j.apenergy.2018.09.054
S. Barbarelli, M. Amelio, and G. Florio, “Experimental activity at test rig validating correlations to select pumps running as turbines in microhydro plants,” Energy Conversion and Management, vol. 149, pp. 781–797, 10 2017. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2017.03.013
C. Warnick, H. A. Mayo, J. L. Carson, and L. H. Sheldon, Hydropower Engineering, 1st ed., B. H. Palumbo, B. Shelley, and T. Caruso, Eds. New Jersey: Prentice Hall, 1984.
M. C. Potter and Wiggert David C, Mecánica De Fluidos, 3rd ed. Mexico: Thomson, 2002.
C. E. Brennen, Hydrodynamics of Pumps, 1st ed. Cambridge University Press, 1967.
D. H. Mesa Grajales, C. M. Garzón Ospina, and A. P. Tschiptschin, “Estudio del desgste erosivo por cavitación de un Acero Austenítico de alto Nitrógeno apoyado en el uso de la Difracción de Electrones Reproyectados-EBSD,” Ingeniare. Revista chilena de ingeniería, vol. 18, no. 2, pp. 235–242, 8 2010. [Online]. Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052010000200010&lng=en&nrm=iso&tlng=en
S. V. Jain, R. N. Patel, S. V. Jain, R. N. Patel, S. V. Jain, R. N. Patel, S. V. Jain, and R. N. Patel, “Investigations on pump running in turbine mode: A review of the state-of-the-art,” Renewable and Sustainable Energy Reviews, vol. 30, no. 30, pp. 841–868, 2 2014. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2013.11.030
J. Quiroga, S. Oviedo, J. Quiroga M., S. Oviedo C, and A. García C, “Detección de cavitación en una bomba centrífuga usando emisiones acústicas,” Ingeniare. Revista chilena de ingeniería, vol. 20, no. 3, pp. 343–349, 12 2012. [Online]. Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052012000300008&lng=en&nrm=iso&tlng=en
F. Botero and A. M. Castro Peralta, “Non-Invasive Detection of Vortex Street Cavitation,” Ingenieria y Universidad, vol. 21, no. 2, p. 176, 6 2017. [Online]. Available: http://revistas.javeriana.edu.co/index.php/iyu/article/view/18047
J. Gomes Pereira, L. Andolfatto, and F. Avellan, “Monitoring a Francis turbine operating conditions,” Flow Measurement and Instrumentation, vol. 63, no. July, pp. 37–46, 10 2018. [Online]. Available: https://doi.org/10.1016/j.flowmeasinst.2018.07.007
H. Zhang and L. Zhang, “Numerical simulation of cavitating turbulent flow in a high head Francis turbine at part load operation with OpenFOAM,” Procedia Engineering, vol. 31, pp. 156–165, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.proeng.2012.01.1006
A. A. Gavrilov, A. V. Sentyabov, A. A. Dekterev, and K. Hanjalić, “Vortical structures and pressure pulsations in draft tube of a Francis-99 turbine at part load: RANS and hybrid RANS/LES analysis,” International Journal of Heat and Fluid Flow, vol. 63, pp. 158–171, 2 2017. [Online]. Available: https://doi.org/10.1016/j.ijheatfluidflow.2016.05.007
R. Tao, R. Xiao, F. Wang, and W. Liu, “Cavitation behavior study in the pump mode of a reversible pump-turbine,” Renewable Energy, vol. 125, pp. 655–667, 2018. [Online]. Available: https://doi.org/10.1016/j.renene.2018.02.114
S. Derakhshan and A. Nourbakhsh, “Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation,” Experimental Thermal and Fluid Science, vol. 32, no. 8, pp. 1620–1627, 9 2008. [Online]. Available: https://doi.org/10.1016/j.expthermflusci.2008.05.004
G. Gyarmathy, T. Staubli, and A. Inderbitzen, “Visualization of rotating stall in a full size water model of a single-stage centrifugal compressor,” La Houille Blanche, vol. 1, no. 3-4, p. 40–45, 2001. [Online]. Available: https://doi.org/10.1051/lhb/2001034
D. F. Tobon Espinosa, “Estudio numérico y experimental de fenómenos hidrodinámicos que ocurren en bombas centrífugas como turbinas,” Ph.D. dissertation, EAFIT, Medellín, 2016.
H. D. Bolaños Arias, “Fenómenos Hidrodinámicos Periódicos en una Bomba Centrífuga de Baja Velocidad Específica,” Ph.D. dissertation, Universidad EAFIT, Medellín, 2018.
H. Bolaños, D. Tobon, J. Pérez, F. Botero, D. F. Tobon Espinosa, J. A. Pérez Mesa, and F. Botero, Respuesta Hidráulica y Mecánica en una Bomba Centrifuga de Baja Velocidad Especifica Debida a Inestabilidades de Carga Parcial, 1st ed., S. Durango Idárra, Ed. Manizales: Universidad Autónoma de Manizales, 2018. [Online]. Available: https://congresos.autonoma.edu.co/sites/default/files/documentos/memorias-amdm2018-2.pdf
H. Sun, R. Xiao, W. Liu, and F. Wang, “Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes,” Journal of Fluids Engineering, Transactions of the ASME, vol. 135, no. 5, pp. 51 101–1, 2013.
D. Li, Z. Zuo, H. Wang, S. Liu, X. Wei, and D. Qin, “Review of positive slopes on pump performance characteristics of pump-turbines,” Renewable and Sustainable Energy Reviews, vol. 112, no. August 2018, pp. 901–916, 2019. [Online]. Available: https://doi.org/10.1016/j.rser.2019.06.036
T. Lin, X. Li, Z. Zhu, J. Xie, Y. Li, and H. Yang, “Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine,” Renewable Energy, vol. 163, pp. 41–55, 2021.
B. STANDARD, BS EN 60994:1993 IEC 994:1991 - Guide for field measurement of vibrations and pulsations in hydraulic machines ( turbines , storage pumps and pump-turbines), 1st ed. London: British Standard, 1993.
T. B. S. Institution, Ed., BS ISO 20816-5:2018 - Mechanical vibration — Measurement and evaluation of machine vibration — Part 5: Machine sets in hydraulic power generating and pump-storage plants, 2018th ed. London: BSI Standards Publication, 2018. [Online]. Available: https://www.iso.org/home.html
E. Egusquiza, C. Valero, X. Huang, E. Jou, A. Guardo, and C. Rodriguez, “Failure investigation of a large pump-turbine runner,” Engineering Failure Analysis, vol. 23, pp. 27–34, 7 2012. [Online]. Available: http://dx.doi.org/10.1016/j.engfailanal.2012.01.012
X. Liu, Y. Luo, and Z. Wang, “A review on fatigue damage mechanism in hydro turbines,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 1–14, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2015.09.025
C. Bueno and J. Carta, “Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands,” Renewable and Sustainable Energy Reviews, vol. 10, no. 4, pp. 312–340, 2006. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2004.09.005
G. Caralis, K. Rados, and A. Zervos, “On the market of wind with hydro-pumped storage systems in autonomous Greek islands,” Renewable and Sustainable Energy Reviews, vol. 14, no. 8, pp. 2221–2226, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2010.02.008
M. Arriaga, “Pump as turbine - A pico-hydro alternative in Lao People’s Democratic Republic,” Renewable Energy, vol. 35, no. 5, pp. 1109–1115, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.renene.2009.08.022
B. Dursun and B. Alboyaci, “The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1979–1988, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2010.03.030
C.-J. Yang and R. B. Jackson, “Opportunities and barriers to pumped-hydro energy storage in the United States,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 839–844, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2010.09.020
J. A. Fonseca and A. Schlueter, “Novel approach for decentralized energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study - Informal vertical community Torre David, Caracas - Venezuela,” Energy, vol. 53, pp. 93–105, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.energy.2013.02.019
G. de Oliveira e Silva and P. Hendrick, “Pumped hydro energy storage in buildings,” Applied Energy, vol. 179, pp. 1242–1250, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2016.07.046
N. F. Yah, A. N. Oumer, and M. S. Idris, “Small scale hydro-power as a source of renewable energy in Malaysia: A review,” Renewable and Sustainable Energy Reviews, vol. 72, no. January, pp. 228–239, 5 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2017.01.068
J. García Morillo, A. McNabola, E. Camacho, P. Montesinos, and J. A. Rodríguez Díaz, “Hydro-power energy recovery in pressurized irrigation networks: A case study of an Irrigation District in the South of Spain,” Agricultural Water Management, vol. 204, no. December 2017, pp. 17–27, 2018. [Online]. Available: https://doi.org/10.1016/j.agwat.2018.03.035
I. Fernández García, D. Ferras, and A. Mc Nabola, “Potential of Energy Recovery and Water Saving Using Micro-Hydropower in Rural Water Distribution Networks,” Journal of Water Resources Planning and Management, vol. 145, no. 3, p. 05019001, 3 2019. [Online]. Available: https://doi.org/10.1061/(ASCE)WR.1943-5452.0001045
I. Fernández-García and A. Mc-Nabola, “Maximizing Hydropower Generation in Gravity Water Distribution Networks: Determining the Optimal Location and Number of Pumps as Turbines,” Journal of Water Resources Planning and Management, vol. 146, no. 1, p. 04019066, 1 2020. [Online]. Available: https://doi.org/10.1061/(asce)wr.1943-5452.0001152
M. Rossi, M. Righetti, and M. Renzi, “Pump-as-turbine for Energy Recovery Applications: The Case Study of An Aqueduct,” Energy Procedia, vol. 101, no. September, pp. 1207–1214, 11 2016. [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2016.11.163
M. Patelis, V. Kanakoudis, and K. Gonelas, “Pressure Management and Energy Recovery Capabilities Using PATs,” Procedia Engineering, vol. 162, pp. 503–510, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.proeng.2016.11.094
G. M. Lima, E. Luvizotto, and B. M. Brentan, “Selection and location of Pumps as Turbines substituting pressure reducing valves,” Renewable Energy, vol. 109, pp. 392–405, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.renene.2017.03.056
G. M. Lima, E. L. Junior, and B. M. Brentan, “Selection of Pumps as Turbines Substituting Pressure Reducing Valves,” Procedia Engineering, vol. 186, pp. 676–683, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.proeng.2017.06.249
B. Standard, BS EN 62006:2011, Acceptance tests of small hydroelectric installations, 2011.
P. Technical Committee ISO/TC 115 and P. Technical Committee CEN/TC 197, “Rotodynamic pumps — Hydraulic performance acceptance tests — Grades 1 and 2 (BS EN ISO 9906:2012),” International Organisation for Standardisation, vol. 3, p. 59, 2012. [Online]. Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41202
Instituto Nacional de Normalización de Chile, “NCh2968.c2005 Turbinas hidráulicas , bombas de acumulación turbinas-bomba - Ensayos de recepción en central,” p. 289, 2005.
International Electrotechnical Commission, IEC CD 60545/Ed2 - IEC:2018 Guideline for commissioning and operation of hydraulic turbines, pump-turbines and storage pumps, 1st ed. International Electrotechnical Commission, 2018, vol. 44.
FOCER, Fortalecimiento de la Capacidad en Energía Renovable para América Central, Manuales sobre energía renovable: Hidráulica a pequeña escala, 1st ed., B. U. Network, Ed. San José, Costa Rica: Fortalecimiento de la Capacidad en Energía Renovable para América Central FOCER, 2012, vol. 1.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.