Tactical planning of domestic supply chains

Authors

  • Rafael Guillermo García-Cáceres Colombian School of Engineering
  • Fernando Palacios-Gómez
  • Mario Ernesto Martínez-Avella Savannah College

DOI:

https://doi.org/10.17533/udea.redin.13663

Keywords:

integer programming, nonlinear programming, logistics, supply chain management

Abstract

This paper presents a single-period mathematical programming model NLMIP of a 5-stage supply chain with multiple possibilities of organizational ownership that allows several distribution channel links. The objective of the model is to optimize profit after tax, taking into account transfer prices, economies of scale, agreements between agents, demand and inventory issues, among other relevant aspects, specially in an idealised domestic environments. Finally, a solution procedure is presented for the problem associated with the NLMIP mathematical programming model proposed, that gives an optimal solution in satisfactory computational time. The model was validated using an experiment based on computational simulations.

|Abstract
= 181 veces | PDF (ESPAÑOL (ESPAÑA))
= 67 veces|

Downloads

Download data is not yet available.

Author Biographies

Rafael Guillermo García-Cáceres, Colombian School of Engineering

Department of Industrial Engineering.

Mario Ernesto Martínez-Avella, Savannah College

Instituto de Postgrado – FORUM.

References

C. H. Aikens. “Facility location models for distribution planning”. European Journal of Operational Research. Vol. 22. 1985. pp. 263 - 279. DOI: https://doi.org/10.1016/0377-2217(85)90246-2

M. A. Cohen, H. L. Lee. “Strategic analysis of integrated production-distribution systems: Models and methods”. Operations Research. Vol. 36. 1988. pp. 216-228. DOI: https://doi.org/10.1287/opre.36.2.216

B. C. Arntzen, G. G. Brintegrated, T. P. Harrison, L. L. Trafton. “Global supply chain management at digital equipment corporation”. Interfaces. Vol. 25. 1995. pp. 69 - 93. DOI: https://doi.org/10.1287/inte.25.1.69

A. M. Geoffrion, R. F. Powers. “Twenty years of strategic distribution system design: An evolutionary perspective”. Interfaces. Vol. 25. 1995. pp. 105-127. DOI: https://doi.org/10.1287/inte.25.5.105

P. A. Slats, B. Bhola, J. J. M. Evers, G Dijkhuizen. “Logistic chain modeling”. European Journal of Operational Research. Vol. 87. 1995. pp. 1-20. DOI: https://doi.org/10.1016/0377-2217(94)00354-F

D. Thomas, M. C. Griffin. “Coordinate supply chain management”. European Journal of Operational Research. Vol. 94. 1996. pp. 1-15. DOI: https://doi.org/10.1016/0377-2217(96)00098-7

C. J. Vidal, M. Goetschalckx. “Strategic productiondistribution models: A critical review with emphasis on global supply chain models”. European Journal of Operational Research. Vol. 98. 1997. pp. 1-18. DOI: https://doi.org/10.1016/S0377-2217(97)80080-X

M. Goetschalckx, C. J. Vidal, K. Dogan. “Modeling and design of global logistic system: A review of integrated strategic and tactical models and design algorithms”. European Journal of Operational Research. Vol. 143. 2002. pp. 1-18. DOI: https://doi.org/10.1016/S0377-2217(02)00142-X

A. Gupta, C. D. Maranas. “Managing demand uncertain in supply chain planning”. Computers & Chemical Engineering. Vol. 27. 2003. pp. 1219 - 1227. DOI: https://doi.org/10.1016/S0098-1354(03)00048-6

C. Chen, W. Lee. “Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices”. Computers & Chemical Engineering. Vol. 28. 2004. pp. 1131 - 1144. DOI: https://doi.org/10.1016/j.compchemeng.2003.09.014

C. J. Vidal, M. Goetschalckx. “A global supply chain model with transfer pricing and transportation cost allocation”. European Journal of Operational Research. Vol. 129. 2001. pp. 134 - 158. DOI: https://doi.org/10.1016/S0377-2217(99)00431-2

F. Villegas, J. Ouenniche. “A general unconstrained model for transfer pricing in multinational supply chains”. European Journal of Operational Research. Vol. 187. 2008. pp. 829 - 856. DOI: https://doi.org/10.1016/j.ejor.2006.04.048

G. Mohan. Mixer integer programming models for supply chain integrated planning. Masters Thesis. Concordia University, Montreal. UMI Dissertation Information Service. 2003. pp. 133.

R. G. García, J. A. Araoz. F. Palacios. “Integral Analysis Method - IAM”. European Journal of Operational Research. Vol. 192. 2009. pp. 891- 903. DOI: https://doi.org/10.1016/j.ejor.2007.10.001

H. Viscencio. Economía para la Toma de Decisiones. Ed. Paraninfo. México. 2002. pp. 386.

K. C. Tan. “A framework of supply chain management literature”. European Journal of Purchasing and Supply Management. Vol. 7. 2001. pp. 39 - 48. DOI: https://doi.org/10.1016/S0969-7012(00)00020-4

W. M. Abdallah. International Transfer Pricing Policies: Decision Making Guidelines for Multinational Companies. Ed. Quorum Books. New York. 1989. pp. 162.

E. R. Silver, R. Peterson. Decision systems for inventory management and production planning. 2nd. ed. Ed. Wiley. New York. 1985. pp. 722.

P. M. Pardalos. S. A. Vavasis. “Quadratic programming with one negative eigenvalue is NP-hard.” Journal of Global Optimization. Vol. 21. 1991. pp. 843 - 855.

W. Hanson. R. K. Martin. “Optimal bundle pricing”. Management Science. Vol. 36. 1990. pp. 155 - 174. DOI: https://doi.org/10.1287/mnsc.36.2.155

Published

2012-11-22

How to Cite

García-Cáceres, R. G., Palacios-Gómez, F., & Martínez-Avella, M. E. (2012). Tactical planning of domestic supply chains. Revista Facultad De Ingeniería Universidad De Antioquia, (60), 102–117. https://doi.org/10.17533/udea.redin.13663