Dynamic Location Model of Intermediate nodes within safety zones in focused logistics context

Authors

  • Dusko Kalenatic Catholic University of Colombia
  • Cesar Amílcar López Bello Catholic University of Colombia
  • Leonardo José González Catholic University of Colombia
  • Feizar Javier Rueda Velasco University of La Sabana

DOI:

https://doi.org/10.17533/udea.redin.13769

Keywords:

location, operational logistics, safety zones, focused logistics

Abstract

This paper presents a mixed integer programming model for multiple logistics node location in order to support decision making processes as a function of combat units movement. The model let us to obtain a dynamic configuration for a supply network in operational logistics. With this purpose focused logistics concepts are employed as a last tendency for sustaining military operations. The model offers the possibility of use safety zones modeled as a spatial constrains which pretend to give warranties about survivability, operability, supplies continuity and flexibility in a hostile environment.

|Abstract
= 187 veces | PDF (ESPAÑOL (ESPAÑA))
= 80 veces|

Downloads

Download data is not yet available.

Author Biographies

Dusko Kalenatic, Catholic University of Colombia

Production Research Group –GIP-.

Cesar Amílcar López Bello, Catholic University of Colombia

Production Research Group –GIP-.

Leonardo José González, Catholic University of Colombia

Production Research Group –GIP-.

Feizar Javier Rueda Velasco, University of La Sabana

Logistics Systems Research Group.

References

M. Mazarr. “The revolution in military affairs: A framework for defense planning”. strategicstudiesinstitute.army.mil/pdffiles/PUB242. pdf. Consultada el 3 de mayo de 2009.

S. Metz, J. Kievit. “Strategy and the evolution in military affairs: from theory to practice”. strategicstudiesinstitute.army.mil/pdffiles/PUB236. pdf . Consultada el 3 de mayo de 2009.

DoD. Joint Vision 2020. http://www.dtic.mil/jointvision/jvpub2.htm. Consultada el 10 de septiembre de 2007.

Department of Defense. Focused Logistics campaign plan. https://acc.dau.mil/CommunityBrowser.aspx?id=32577. Consultada el 15 de septiembre de 2007.

M. R. Endsley. “Toward a theory of situational awareness in dynamic systems”. Human Factors. Vol. 37. 1995. pp. 32-64. DOI: https://doi.org/10.1518/001872095779049543

S. H. Haeckel. Adaptive Enterprise-Creating and Leading Sense-and-Respond Organizations. Ed. Harvard Business School Press. Boston (MA). 1999. pp. 51-74.

D. Kalenatic, C. López, L. González, F. Rueda. “Tercera faceta de la logística”. Revista de la Escuela Colombiana de Ingeniería. Vol. 71. 2008. pp. 19-25.

M. Kress. Operational Logistics. Ed. Kluwer Academic Publishers Group. Boston (MA). 2002. pp. 37-165. DOI: https://doi.org/10.1007/978-1-4615-1085-7_3

D. P. Johnstone. Modeling the pre-positioning of air force precision guided munitions. Department of the Air Force. Air University. Ed. Air Force Institute of Technology. USA. 2002. pp.6-35.

R. A. Wolf. Multiobjective Collaborative Optimization of Systems of Systems. B. S. Systems Engineering. United States Naval Academy- MIT. Boston (MA). 2005. pp. 45-61.

C. Ragsdale. Spreadsheet Modeling and Decision Analysis. A Practical Introduction to Management Science. 5a . ed. Ed. South-Western Thompson Publishers. Mason (OH). 2007. pp.177-232.

A. J. Cullen. A multi-objective linear program model to test hub-and-spoke networks as a potential air force deployment alternative. Department of the Air Force. Air University. Air Force Institute of Technology USA. 2008. pp. 25-26.

A. J. Cullen. A multi-objective linear program model to test hub-and-spoke networks as a potencial air force deployment alternative. Department of the Air Force. Air University. Air Force Institute of Technology. USA. 2008. pp. 44-60.

C. A. Punches. A large scale integer linear program as a decision support tool for force mix selection. Department of the Air Force. Air Education and Training Command USA. 2006. pp.15-54.

A. J. Geyer. Operations-focused optimized theater weather sensing strategies using preemptive binary integer programming. Department of the Air Force. Air University. Air Force Institute of Technology. USA. 2006. pp. 100-125.

M. Mattock, J. F. Schank, J. P. Stucker, J. Rothenberg. New Capabilities for Strategic Mobility Analysis using Mathematical Programming. Ed. Rand Corporation. Santa Mónica (CA). 1995. pp. 5-18.

D. Kassing, K. Girardini, B. Leverich, R. E. Stanton, R. Eden. New Tools for Balancing Theater Combat and Support. Ed. Rand. Santa Mónica (CA). 1996. pp.7-33.

M. Kress. “Efficient strategies for transporting mobile forces”. Journal of the Operational Research Society. Vol. 52. 2001. pp. 310-317. DOI: https://doi.org/10.1057/palgrave.jors.2601088

F. Barahona, P. Chowdhary, M. Ettl, P. Huang. “Inventory allocation and transportation scheduling for logistics of network-centric military operations”. IBM Journal of Research and Development. Vol. 51. 2007. pp. 391-407. DOI: https://doi.org/10.1147/rd.513.0391

N. E. Ozdemirel, L. Kandiller. “Semi-dynamic modelling of heterogeneous land combat”. Journal of the Operational Research Society. Vol. 57. 2006. pp. 38-51. DOI: https://doi.org/10.1057/palgrave.jors.2601940

R. Z. Farahani, N. Asgari. “Combination of MCDM and covering techniques in a hierarchical model for facility location: A case study”. European Journal of Operational Research. Vol. 176. 2007. pp. 1839-1858. DOI: https://doi.org/10.1016/j.ejor.2005.10.039

D. Kalenatic, C. Lopez, L. Gonzalez, F. Rueda. “Modelo para la localización de una plataforma de cross docking en el contexto de logística focalizada”. Revista Ingeniería. Vol. 13. 2008. pp.17-34. DOI: https://doi.org/10.18359/rcin.1066

D. Kalenatic, C. López, L. González, F. Rueda. modelos Matemáticos aplicados a Logística Focalizada. Ed. Universidad Católica de Colombia. Bogotá. (Colombia). 2010. pp. 35-51.

J. Dias, M. E. Captivo, J. Clímaco. “A dynamic location problem with maximum decreasing capacities”. Central European Journal of Operations Research. Vol. 16. 2008. pp.251-280. DOI: https://doi.org/10.1007/s10100-008-0055-1

J. Dias, M. E. Captivo, J. Clímaco. “A memetic algorithm for multi-objective dynamic location problems”. Journal of Global Optimization. Vol. 42. 2007. pp.221-253. DOI: https://doi.org/10.1007/s10898-007-9239-9

O. Berman, Z. Drezner, A. Tamir, G. O. Wesolowsky. “Optimal Location with equitable Loads”. Annals of Operations Research. Vol. 167. 2009. pp. 307-325. DOI: https://doi.org/10.1007/s10479-008-0339-9

D. Kalenatic, C. López, L. González, F. Rueda. Una visión Integral y Dinámica de la organización manufacturera. Ed. Universidad Católica de Colombia. Bogotá. 2008. pp. 40-51.

J. Orjuela, D. Kalenatic, I. Huertas. Modelo integral para la gestión de empresas de servicios. Ed. Universidad Católica de Colombia. Bogotá. 2010. pp.119-117.

Published

2012-11-29

How to Cite

Kalenatic, D., López Bello, C. A., González, L. J., & Rueda Velasco, F. J. (2012). Dynamic Location Model of Intermediate nodes within safety zones in focused logistics context. Revista Facultad De Ingeniería Universidad De Antioquia, (59), 133–144. https://doi.org/10.17533/udea.redin.13769