Environmental economic dispatch with fuzzy and possibilistic entities

Authors

  • Edgar Muela University of La Salle
  • Janneth Secue Ingetec S.A.

DOI:

https://doi.org/10.17533/udea.redin.13827

Keywords:

decision-making, environmental, economic dispatch, fuzzy sets, possibility theory

Abstract

In this paper a fuzzy possibilistic model for Environmental Economic Dispatch is presented, in order to consider adequately some involved uncertain variables. The developed model can be viewed as an integrative focus where uncertainty is not considered like a simple decision making parameter but it is analyzed as a criterion decision. Here, a fuzzy possibilistic model looks for reflecting the imprecision, ambiguity, and vagueness present in the analyzed problem. Fuzzy sets and possibility theory are an alternative to do this, because they allow including this sort of imperfect information into the problem.

|Abstract
= 112 veces | PDF (ESPAÑOL (ESPAÑA))
= 60 veces|

Downloads

Download data is not yet available.

Author Biographies

Edgar Muela, University of La Salle

Calposalle Group, Faculty of Engineering.

Janneth Secue, Ingetec S.A.

Electrical Division.

References

S. Rahman, A. De Castro. “Environmental Impacts of Electricity generation: A Global Perspective”. IEEE Transactions on Energy Conversion. Vol. 10. 1995. pp. 307-314. DOI: https://doi.org/10.1109/60.391897

P. Soderholm, T. Sundquist. “Pricing Environmental Externalities in the Power Sector: Ethical limits and Implications for Social Choice”. Ecological Economics .Vol. 46. 2003. pp. 333-350. DOI: https://doi.org/10.1016/S0921-8009(03)00185-X

L. Wang, C.Singh. “Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm”. Electric Power Systems Research. Vol. 77. 2007. pp. 1654-1664. DOI: https://doi.org/10.1016/j.epsr.2006.11.012

A. Nasiruzzaman, M. Rabbani. “Implementation of Genetic Algorithm and fuzzy logic in economic dispatch problem”. International Conference on Electrical and Computer Engineering. 2008. ICECE. Dhaka (Bangladesh). 2008. pp. 360-365. DOI: https://doi.org/10.1109/ICECE.2008.4769232

R Bellmann, L. Zadeh. “Decision making in fuzzy environment”. Manage. Sci. Vol. 17. 1970. pp. 141- 164. DOI: https://doi.org/10.1287/mnsc.17.4.B141

H. J. Zimmermann. “Fuzzy set theory and its applications”. 3ª. ed. Ed. Kluwer Academic Publishers. Boston (MA). 1996. pp. 291-310. DOI: https://doi.org/10.1007/978-94-015-8702-0

L. A. Zadeh. “Fuzzy Sets as a Basis for a Theory of Possibility”. Fuzzy Sets and Systems. Vol. 1. 1978. pp. 3-28. DOI: https://doi.org/10.1016/0165-0114(78)90029-5

D. Dubois, H. Prade. “Fundamentals of Fuzzy Sets”. The Handbooks of Fuzzy Sets Series. Ed. Kluwer Academic Publishers. Boston (MA). Vol. 7. 2000. pp. 343-414. DOI: https://doi.org/10.1007/978-1-4615-4429-6_8

M. Inuiguchi, J. Ramik. “Possibilistic Linear Programming: A Brief Review of Fuzzy Mathematical Programming and a Comparison with Stochastic Programming in Portfolio Selection Problem”. Fuzzy Sets and System. Vol. 111. 2000. pp. 3-28. DOI: https://doi.org/10.1016/S0165-0114(98)00449-7

M. Sakawa. Fuzzy sets and interactive multiobjective optimization. Ed. Plenum Press. New York. 1993. pp. 10-54. DOI: https://doi.org/10.1007/978-1-4899-1633-4

Published

2012-12-04

How to Cite

Muela, E., & Secue, J. (2012). Environmental economic dispatch with fuzzy and possibilistic entities. Revista Facultad De Ingeniería Universidad De Antioquia, (59), 227–236. https://doi.org/10.17533/udea.redin.13827