Asymptotic differentiation of signals in the trajectory tracking control of a differentially flat nonlinear magnetic suspension system
DOI:
https://doi.org/10.17533/udea.redin.14875Keywords:
differential flatness, differentiation of signals, motion planning, magnetic levitationAbstract
This paper deals with the problem of time-varying desired position reference trajectory tracking tasks for an object in a differentially flat nonlinear magnetic levitation system using position measurements only. A novel scheme for signal differentiation is proposed for asymptotic estimation of velocity and acceleration. This differentiator can be utilized in many control applications of practical engineering systems where the differentiation of any signal is required. The differentiation of signals is combined with a differential flatness-based controller for asymptotic tracking of reference trajectories. Simulation results are provided to show the efficient performance of the proposed differentiator-control scheme. Two issues for reference trajectory tracking tasks are performed. The first one considers the rest-to-rest position transfer problem of the object from a nominal position to another, while the second one focuses on the sinusoidal position trajectory tracking problem.
Downloads
References
G. Schweitzer, E. Maslen. “Magnetic Bearings. Theory, Design and Application to Rotating Machinery”. Ed. Springer. Germany. 2010. pp. 1-26. DOI: https://doi.org/10.1007/978-3-642-00497-1_1
A. Hajjaji, M. Ouladsine. “Modeling and Nonlinear Control of Magnetic Levitation Systems.” IEEE Transactions on Industrial Electronics. Vol. 48. 2001. pp. 831-838. DOI: https://doi.org/10.1109/41.937416
F. Lin, L. Teng, P. Shieh. “Intelligent Adaptive Back-stepping Control System for Magnetic Levitation Apparatus.” IEEE Transactions on Magnetics. Vol. 43. 2007. pp. 2009-2018. DOI: https://doi.org/10.1109/TMAG.2006.890325
D. Cho, Y. Kato, D. Spilman. “Sliding mode and classical control magnetic levitations systems.” IEEE Control Systems Magazine. Vol. 13. 1993. pp. 42-48. DOI: https://doi.org/10.1109/37.184792
M. Lairi, G. Bloch. “Neural control of Maglev system”, Proceedings of MCEA’98. Marrakech. Morocco. 1998. pp. 472-475.
J. Slotine. “Applied Nonlinear Control”. NJ: Prentice-Hall. Englewood Cliffs.1991. pp. 1-405.
F. Zhao, S. Loh, J. May. “Phase-space nonlinear control toolbox: The maglev experience”. Proceedings of Hybrid Systems Workshop. Notre Dame. USA. 1997. pp. 1- 9.
C. Bonivento, L. Gentili, L. Marconi. “Balanced Robust Regulation of a Magnetic Levitation System”. IEEE Transactions on Control Systems Technology. Vol. 13. 2005. pp. 1036-1044. DOI: https://doi.org/10.1109/TCST.2005.852107
L. Gentili, L. Marconi. “Robust nonlinear disturbance suppression of a magnetic levitation system.” Automatica. Vol. 39. 2003. pp. 735-742. DOI: https://doi.org/10.1016/S0005-1098(02)00307-2
J. Yang, Y. Lee, O. Kwon. “Development of Magnetic Force Modeling Equipment for Magnetic Levitation System”. Proceedings of 2010 International Conference on Control Automation and Systems (ICCAS). Gyeonggi-do. Korea. 2010. pp. 29-33. DOI: https://doi.org/10.1109/ICCAS.2010.5669947
Z. Yang, K. Kunitoshi, S. Kanae, K. Wada. “Adaptive Robust Output-Feedback Control of a Magnetic Levitation System by K-Filter Approach.” IEEE Trans. on Industrial Electronics. Vol. 55. 2008. pp. 390-399. DOI: https://doi.org/10.1109/TIE.2007.896488
C. Lin, M. Lin, C. Chen. “SoPC-Based Adaptive PID Control System Design for Magnetic Levitation System.” IEEE Systems Journal. Vol. 5. 2011. pp. 278- 287. DOI: https://doi.org/10.1109/JSYST.2011.2134530
M. Feemster, Y. Fang, D. Dawson. “Disturbance Rejection for a Magnetic Levitation System.” IEEE/ ASME Trans. on mechatronics. Vol. 11. 2006. pp. 709- 717. DOI: https://doi.org/10.1109/TMECH.2006.886248
F. Suryawan, J. Doná, M. Seron. “Methods for trajectory generation in a magnetic-levitation system under constraints”. Proceedings of 18th Mediterranean Conference on Control & Automation. Marrakech. Morocco. 2010. pp. 945-950. DOI: https://doi.org/10.1109/MED.2010.5547748
A. Yetendje, M. Seron, J. De Doná, J. Martínez. “Sensor fault-tolerant control of a magnetic levitation system.” International Journal of Robust and Nonlinear Control. Vol. 20. 2010. pp. 2108-2121. DOI: https://doi.org/10.1002/rnc.1572
H. Khalil. Nonlinear Systems. Prentice Hall. 3rd. Ed. New Jersey. USA. 2002. pp. 1-32.
M. Flies, J. Lé vine, P. Martín, P. Rouchon. “Flatness and detect of nonlinear systems: Introductory theory and examples.” International Journal of control. Vol. 61. 1993. pp. 1327-1361. DOI: https://doi.org/10.1080/00207179508921959
E. Chávez, F. Beltrán, A. Valderrábano, A. Favela. “Active Vibration Control of Vehicle Suspension Systems Using Sliding Modes, Differential Flatness and Generalized Proportional-Integral Control.” Rev. Fac. Ing. Univ. Antioquia. No. 61. 2011. pp. 104-113.
Quanser Inc. Magnetic Levitation Plant Manual. Markham. Ontario. Canada. 2006. http://www.quanser.com/. pp. 1-12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.