Implementing Fast-Haar Wavelet transform on original Ikonos images to perform image fusion: qualitative assessment
DOI:
https://doi.org/10.17533/udea.redin.15003Keywords:
image fusion, fast haar wavelet transform (FHWT), RGB-IHS transformation, mallat’s algorithm, IKONOS Images, Wavelet transformAbstract
This article presents the Fast Haar Wavelet Transform (FHWT) algorithm applied to satellite-images fusion. FHWT is applied to both a multispectral image and a panchromatic Ikonos image using the digital image processing toolbox and wavelet toolbox provided by MatLab®. The results of the fusion are analyzed and evaluated quantitatively. Regarding the quantitative results of the fusion, first the mathematical-statistical correlation algorithm is used to analyze the spectral and spatial gain of the merged images. Next, the kappa coefficient is analyzed on three samples taken from the merged images, which are binarized in order to identify their spatial accuracy. It is shown that FHWT outperforms other predefined wavelets (namely rbio6.8, bior6.8, db7, dmey and haar) when merging the images. Moreover, merged images maintain the same spectral output as the original image, and also exhibit significant spatial resolution gain.
Downloads
References
E. Chuvieco. Teledetección Ambiental. 3a ed. Ed. Arial S. A. 1996. Barcelona, España. pp. 1-568.
C. Pinilla. Elementos de Teledetección. 1ª ed. Ed. Ra-Ma. Madrid, España. 1995. pp. 313.
K. Castleman. Digital Image Processing. 3a ed. Ed. Prentice-Hall. 1979. Nueva Jersey. USA. pp. 1- 651.
R. González, R. Woods. Tratamiento Digital de Imágenes. 1ª ed. Ed. Diaz de Santos S. A. Wilmington, Estados Unidos. 1996. pp. 1-773.
L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, L. Bruce. “Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data Fusion Contest”. IEEE Transactions on Geoscience and Remote Sensing. Vol. 45. 2007. pp. 3012-3021. DOI: https://doi.org/10.1109/TGRS.2007.904923
C. Pohl, J. Van Genderen. “Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications”. International Journal of Remote Sensing. Vol. 19. 1998. pp. 823-854. DOI: https://doi.org/10.1080/014311698215748
M. Gónzalez, R. García, J. Herrero. “Fusion of Multispectral and Panchromatic Images New Methods Based on Wavelet Transforms – Evaluation of Crop Classification Accuracy”. T. Benes (editor). Geoinformation for European-wide Integration. 1ª ed. Ed. Millpress. Rotterdam, Netherlands. 2003. pp. 265-272.
M. Gónzalez, J. Saleta, R. García-C., R. García. “Fusion of Multispectral and Panchromatic Images Using Improved IHS and PCA Merges Based on Wavelet Decomposition”. International Journal of Remote Sensing. Vol. 26. 2005. pp. 595-614.
C. Gonzalo, M. Lillo. “Fusión de Imágenes QuickBird Mediante una Representación Conjunta Multirresolución–Multidireccional”. IEEE Latin America Transactions. Vol. 5. 2007. pp. 32-37. DOI: https://doi.org/10.1109/T-LA.2007.4444530
J. Nuñez, X. Otazu, O. Fors, A. Prades, V. Pala, R. Arbiol. “Multiresolution-Based Image Fusion With Additive Wavelet Decomposition”. IEEE Transactions on Geoscience and Remote Sensing. Vol. 37.1999. pp. 1204 -1211. DOI: https://doi.org/10.1109/36.763274
R. Riyahi, C. Kleinn, H. Fuchs. “Comparison of Different Image Fusion Techniques for Individual Tree Crown Identification Using Quickbird Image”. International Society for Photogrammetry and Remote Sensing, High- Resolution Earth Imaging for Geospatial Information. Vol. XXXVIII-1-4-7/W5. 2009. pp. 1-4.
Y. Zhang. “Understanding Image Fusion”. Photogrammetric Engineering & Remote Sensing. Vol. 70. 2004. pp. 657-661.
L. Wald. “Some Terms of Reference in Data Fusion”. IEEE Trans Geoscience and. Remote Sensing. Vol. 37. 1999. pp. 1190-1193. DOI: https://doi.org/10.1109/36.763269
MATLAB®. Image Processing Toolbox User’s Guide Vesion 2. For Use with MATLAB®. 1998.
M. Misiti, Y. Misiti, G. Oppenheim, J. M. Poggi. The Wavelet Toolbox. For Use MATLAB®. 1996.
S. Mallat. “A Theory for Multiresolution Signal Decomposition: the Wavelet Representation”. IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11. 1989. pp. 674-693. DOI: https://doi.org/10.1109/34.192463
I. Daubechies. “Orthonormal Basis of Compactly Supported Wavelets”. Communications on pure applied mathematics. Vol. 41. 1988. pp. 909-996. DOI: https://doi.org/10.1002/cpa.3160410705
M. Gónzalez, X. Otazu, O. Fors, A. Seco. “Comparison Between Mallat’s and the ‘à trous’ Discrete Wavelet Transform Based Algorithms for the Fusion of Multispectral and Panchromatic Images”. IEEE Transactions on Geosciences and Remote Sensing. Vol. 42. 2005. pp. 1291-1297.
Y. Nievergelt. Wavelets made easy. 1ª ed. Ed. Birkhäuser. Boston, USA. 1999. pp. 1-297. DOI: https://doi.org/10.1007/978-1-4612-0573-9
I. Daubechies. Ten Lectures on Wavelet. 1ª ed. Ed. SIAM. Philadelphia, USA. 1992. pp.1-377. DOI: https://doi.org/10.1137/1.9781611970104
S. Mallat. A Wavelet Tour of Signal Processing. 3a ed. Ed. Elsevier. Philadelphia, USA. 2009. pp 1-832.
J. Jensen. Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd ed. Ed. Prentice Hall. New Jersey, USA. 1996. pp. 1-554.
R. Medina, L. Joyanes, C. Pinilla. Evaluación de la Transformada de Wavelet para Fusión de Imágenes Satelitales. In conference record of 8th latin american and Caribbean conference for engineering and technology: innovation and development for the Americas: engineering, education, research and development. Arequipa, Perú. 2010. pp. 1-2.
R. Medina, L. Joyanes, C. Pinilla. Algoritmos Matemático para la Fusión de Imágenes Satelitales. In V Simposio Internacional de Sistemas de Información e Ingeniería de Software en la Sociedad del Conocimiento. 1a ed. Ed. @LibroText. Bogotá Colombia. 2010. pp. 83-94.
S. Murray. Estadística. 2ª ed. Ed. Mc Graw Hill. Madrid, España. 1999. pp. 1-556
N. Otsu. “A Threshold Selection Method From Gray Level Histograms”. IEEE Transaction On Systems, Man and Cybernetics. Vol. 9. 1979. pp. 62-66. DOI: https://doi.org/10.1109/TSMC.1979.4310076
S. Al-Amri, N. Kalyankar, S. Khamitkar. “Image Segmentation by Threshold Techniques”. Journal of Computing. Vol. 2. 2010. pp 83-87.
J. Cohen. “A Coefficient of Agreement for Nominal Scales”. Educational and Psychological Measurement. Vol. 20. 1960. pp. 27-46. DOI: https://doi.org/10.1177/001316446002000104
R. Medina, I. Lizarazo. Fusión de Imágenes Satelitales Usando la Transformada De Wavelet. 1ª ed. Ed. Fondo de Publicaciones Universidad Distrital Francisco José de Caldas. Bogotá DC., Colombia. 2004. pp. 1-196.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.