Simulation of optical pulse propagation in microstructured waveguides

Authors

  • Francisco Racedo-Niebles University of the Coast
  • Sonia Valbuena-Duarte Atlantic University

DOI:

https://doi.org/10.17533/udea.redin.16139

Keywords:

finite differences, core, boundary, algorithm, waveguide

Abstract

In  this  paper  we  study  the  propagation  of  optical  pulses  by  the  finite differences method in a ridge waveguides structured for applications in optical transmission systems in the region of 1.55 μm. With the transformation of Maxwell’s equations its discrete formulation, for the system under study, and the appropriate boundary conditions was implemented an algorithm in Matlab that enables to visualize the behavior of the pulse when it propagates in the geometry of the waveguide studied. Variations in simulation were made in the wavelength, width of the core and the refractive index materials with which the results obtained were consistent with those reported in the literature. This study  allows  proposing  an  appropriate  geometry  and  materials  for  making  waveguides for applications in optical communications systems.

|Abstract
= 135 veces | PDF (ESPAÑOL (ESPAÑA))
= 68 veces|

Downloads

Download data is not yet available.

Author Biographies

Francisco Racedo-Niebles, University of the Coast

Group of Mathematics and Informatics of the University Corporation of the Coast of Basic Sciences (MATINCUC).

Sonia Valbuena-Duarte, Atlantic University

Emission Optical and Laser Spectroscopy Group (GEOEL), Faculty of Basic Sciences.

References

K. Yee. “Numerical solution of initial boundary value problem involving maxwell´s equatios in isotropic media”. IEEE Transactions on Antennas and Propagation. Vol. 14. 1966. pp. 302-307. DOI: https://doi.org/10.1109/TAP.1966.1138693

Z. Sacks, D. Kingsland, R. Lee, J. Lee. “A perfectly matched layer anisotropic absorber for use as an absorbing boundary conditions”. SIAM. Vol. 512. 2012. pp. 317-337.

D. Sullivan. Electromagnetic simulation using the FDTD method. 2nd ed. Ed. IEEE Press. New York, USA. 2007. pp. 180-207.

A. Taflove, S. Hagness. Computational electrodynamics the finite-difference time-domain method. 2nd ed. Ed. Springer. 2012. pp. 245-282.

F. Racedo, N. Torres. Teoría electromagnética. 1st ed. Ed. Universidad del Atlántico. Barranquilla, Colombia. 2010. pp. 25-65.

M. López, J. Gaspar, J. Manzanares. “Aplicación del método de diferencias finitas en el dominio del tiempo a la simulación del campo electromagnético usando Matlab”. Revista Mexicana de Física. E 52. 2006. pp. 58-64.

S. Valbuena, F. Racedo. Método de diferencias finitas en electromagnetismo. 1st ed. Ed. EDUCOSTA. Barranquilla, Colombia. 2010. pp. 15-45.

S. Nam, J. Kang, J. Kim, “Direct pattering of polymer optical waveguided using liquid state UV-curable polymer”. Macromolecular Research. Vol. 14. 2006. pp. 114-116. DOI: https://doi.org/10.1007/BF03219077

U. Ascher and L. Petzold. “Computer methods for ordinary differential equations and differential-algebraic equations”. SIAM. Vol. 137. 1998. pp. 121-138. DOI: https://doi.org/10.1137/1.9781611971392

J. Douglas, H. Rachford. “On the numerical solution of heat conduction problems in two and three space variables”. Transactions of the American Mathematical Society. Vol. 82. 1956. pp. 421-439. DOI: https://doi.org/10.1090/S0002-9947-1956-0084194-4

C. Fletcher. Computational techniquess for fluid dynamics. 1st ed. Ed. Springer-Verlag. Berlin, Germany. 1988. pp.125-132.

Published

2014-11-13

How to Cite

Racedo-Niebles, F., & Valbuena-Duarte, S. (2014). Simulation of optical pulse propagation in microstructured waveguides. Revista Facultad De Ingeniería Universidad De Antioquia, (73), 9–18. https://doi.org/10.17533/udea.redin.16139