Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks

Authors

DOI:

https://doi.org/10.17533/udea.redin.16382

Keywords:

artificial neural networks (ANN), drift, seismic design, framed structures, optimization

Abstract

This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures.

|Abstract
= 306 veces | PDF (ESPAÑOL (ESPAÑA))
= 161 veces|

Downloads

Download data is not yet available.

Author Biographies

Jorge Arcila Zea, EAFIT University

Civil Engineer-University of Antioquia (2011). Currently, a Master's student in Earthquake-Resistant Engineering.

Carlos Alberto Riveros Jerez, University of Antioquia

Faculty of Engineering.

Javier Enrique Rivero Jerez, University of Antioquia

Faculty of Engineering, Teacher.

References

N. Lagaros, M. Papadrakakis, G. Kokossalakis. “Structural optimization using evolutionary algorithms”. Computers and Structures. Vol. 80. 2002. pp. 571-589. DOI: https://doi.org/10.1016/S0045-7949(02)00027-5

C. Camp S. Pezeshk, H. Hansson. “Flexural design of reinforced concrete frames using a genetic algorithm”. Journal of Structural Engineering. Vol. 129. 2003. pp. 105-115. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(105)

N. Ahmadi, R. Moghadas, A. Lavaei. “Dynamic analysis of structures using neural networks”. American Journal of Applied Sciences. Vol. 5. 2008. pp. 1251-1256. DOI: https://doi.org/10.3844/ajassp.2008.1251.1256

M. Sonmez. “Discrete optimum design of truss structures using artificial bee colony algorithm”. Structural and Multidisciplinary Optimization. Vol. 43. 2011. pp. 85-97. DOI: https://doi.org/10.1007/s00158-010-0551-5

D. Suji, S. Natesan, R. Murugesan, R. Sanjai. “Optimal design of fibrous concrete beams through simulated annealing”, Asian Journal of Civil Engineering– Building and Housing. Vol. 9. 2008. pp. 193-213

C. Ferreira, M. Barros, A. Barros. “Optimal design of reinforced concrete T-sections in bending”. Engineering Structures. Vol. 25. 2003. pp. 951-964. DOI: https://doi.org/10.1016/S0141-0296(03)00039-7

M. Lepš, M. Šejnoha. “New approach to optimization of reinforced concrete beams”. Computers and Structures. Vol. 81. 2003. pp. 1957-1966. DOI: https://doi.org/10.1016/S0045-7949(03)00215-3

C. Coello, A. Christiansen. “Multiobjective optimization of trusses using genetic algorithms”. Computers and Structures. Vol. 75. 2000. pp. 647-660. DOI: https://doi.org/10.1016/S0045-7949(99)00110-8

M. Ghozi, P. Aji, P. Suprobo. “Evolutionary Parallel SAP2000 for truss structure optimization”, International Journal Academic Research. Vol. 3. 2011. pp. 1140-1145.

C. Chan, M. Wong. “Evolutionary optimization of braced steel frameworks for tall buildings using a hybrid OC-GA method”. Advances in Engineering Structures, Mechanics and Construction–Solid Mechanics and Its Applications. Vol. 140. 2006. pp. 205-214. DOI: https://doi.org/10.1007/1-4020-4891-2_17

J. Lee. C. Yun. “Damage localization for bridges using probabilistic neural networks”. KSCE Journal of Civil Engineering. Vol. 11. 2007. pp. 111-120. DOI: https://doi.org/10.1007/BF02823854

N. Caglar, M. Elmasa, Z. Yamana, M. Saribiyikb. “Neural networks in 3-dimensional dynamic analysis of reinforced concrete buildings”. Construction and Building Materials. Vol. 22. 2008. pp. 788-800. DOI: https://doi.org/10.1016/j.conbuildmat.2007.01.029

G. Vanderplaats. “Structural optimization: where we’ve been and where we’re going”. Computer Aided Optimum Design of Structures V. Vol. 28. 1977. pp. 45-54.

L. Schmit, B. Farshi. “Some approximation concepts for structural synthesis”. Journal of American Institute of Aeronautics and Astronautics. Vol. 12. 1974. pp. 692-699. DOI: https://doi.org/10.2514/3.49321

H. Adeli. “Neural Networks in Civil Engineering: 1989-2000”. Computer-Aided Civil and Infrastructure Engineering. Vol. 16. 2001. pp. 126-142. DOI: https://doi.org/10.1111/0885-9507.00219

M. Hadi. “Neural networks applications in concrete structures”. Computers and Structures. Vol. 81. 2003. pp. 373-381. DOI: https://doi.org/10.1016/S0045-7949(02)00451-0

N. Caglar. “Neural network based approach for determining the shear strength of circular reinforced concrete columns”. Construction and Building Materials. Vol. 23. 2009. pp. 3225-3232. DOI: https://doi.org/10.1016/j.conbuildmat.2009.06.002

M. Hakan. “An evaluation of effective design parameters on earthquake performance of RC buildings using neural networks”. Engineering Structures. Vol. 32. 2010. pp. 1888-1898. DOI: https://doi.org/10.1016/j.engstruct.2010.03.010

O. Möller, R. Foschi, L. Quiroz, M. Rubinstein. “Structural optimization for performance-based design in earthquake engineering: Applications of neural networks”. Structural Safety. Vol. 31. 2009. pp. 409- 499. DOI: https://doi.org/10.1016/j.strusafe.2009.06.007

N. Lagaros, M. Papadrakakis. “Neural network based prediction schemes of the non-linear seismic response of 3D buildings”. Advances in Engineering Software. Vol. 44. 2012. pp. 92-115. DOI: https://doi.org/10.1016/j.advengsoft.2011.05.033

N. Lagaros, M. Papadrakakis. “Reliability-based structural optimization using neural networks and Monte Carlo simulation”. Computer Methods in Applied Mechanics and Engineering. Vol. 191. 2002. pp. 3491-3507. DOI: https://doi.org/10.1016/S0045-7825(02)00287-6

L. Zhang, G. Subbarayan. “An evaluation of backpropagation neural networks for the optimal design of structural systems: Part I. Training procedures”. Computer Methods in Applied Mechanics and Engineering. Vol. 191. 2002. pp. 2873-2886. DOI: https://doi.org/10.1016/S0045-7825(01)00372-3

L. Zhang, G. Subbarayan. “An evaluation of backpropagation neural networks for the optimal design of structural systems: Part II. Numerical evaluation”. Computer Methods in Applied Mechanics and Engineering. Vol. 191. 2002. pp. 2887-2904. DOI: https://doi.org/10.1016/S0045-7825(02)00213-X

E. Caicedo, J. López. “Perceptrón Multicapa y Algoritmo Backpropagation”. Una aproximación práctica a las Redes Neuronales Artificiales. 1a ed. Ed. Universidad del Valle. Cali, Colombia. 2009. pp. 75- 136. DOI: https://doi.org/10.25100/peu.64

B. del Brío, A. Sanz. “Fundamentos de las Redes Neuronales Artificiales”, “Redes Neuronales Supervisadas”, “Aplicaciones de Redes Neuronales Artificiales”, Redes neuronales y sistemas difusos. 2a ed. Ed. Alfaomega. Ciudad de México, México. 2002. pp. 13-32, pp. 63-84, 209-240.

S. Haykin. “Introduction”, “Learning Processes”, “Single Layer Perceptrons”, “Multilayer Perceptrons”. Neural Networks. A comprehesive foundation. 2a ed. Ed. Pearson Prentice Hall. Singapur, Singapur. 1999. pp. 23-71, 72-124, 136-170, 178-266.

B. Gottfried, J. Weisman. “Introduction”, “Optimization fundamentals”. Introduction to optimization theory. 1st ed. Ed. Prentice Hall. New Jersey, USA. 1973. pp. 4-22, 26-57.

R. Haftka, Z. Gürdal. “Classical tools in Structural Optimization”. Elements of Structural Optimization. 3rd ed. Ed. Kluwer Academic Publishers. Amsterdam, The Netherlands. 1992. pp. 23-61. DOI: https://doi.org/10.1007/978-94-011-2550-5_2

AIS. “Título A”, “Título C”. Normas Colombianas de Diseño y Construcción Sismo-Resistente. Bogotá, Colombia. 2010. pp. A15-A30, A76, C42, C69, C178.

M. Hudson, M. Hagan, H. Demuth. “Multilayer Networks and Backpropagation Training”. Neural Network Toolbox, User’s Guide. Ed. The Mathworks Inc. Natick, USA. 2011. pp. 3.2-3.28.

Published

2014-02-12

How to Cite

Arcila Zea, J. ., Riveros Jerez, C. A., & Rivero Jerez, J. E. (2014). Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks. Revista Facultad De Ingeniería Universidad De Antioquia, (70), 34–44. https://doi.org/10.17533/udea.redin.16382