Effect of the fusion and aging process in the synthesis of zeotypes from fly ash
DOI:
https://doi.org/10.17533/udea.redin.16484Keywords:
fly ash, aging method, synthesis, zeotypes, fusionAbstract
In this study, we evaluate the use of a sample of fly ash from TERMOPAIPA (Boyacá, Colombia) as the starting material for the synthesis of zeotypes on laboratory scale through its transforming via alkaline fusion, using solid or water dissolved NaOH, followed by aging during 6, 12 and 24 h under static or ultrasound conditions prior to hydrothermal treatment during 6, 12 and 24 h of reaction time. Experimental data reveal that the method, state of alkaline fusion, temperature and time of reaction strongly affect the zeotype to be synthesized. Low-silica sodium zeotypes were synthesized, which include zeolite NaP1, faujasite, and traces of sodalite. The synthesis of zeotypes from fly ash represents an interesting alternative for the mitigation of the environmental problem associated to the disposal of industrial wastes. Therefore, fly ash-based zeotypes synthesized under optimum experimental conditions can be used in several applications for environmental waste treatment.
Downloads
References
H. Höller, U. Barth. “Zeolite formation from fly ash”. Fortschr. Miner. Vol. 63. 1985. pp. 21-43.
C. Ríos, C. Williams, O. Castellanos. “Synthesis and characterization of zeolites by alkaline activation of kaolinite and industrial by-products (fly ash and natural clinker)”. Bistua. Vol. 4. 2006. pp. 60-71.
F. Mondragón, F. Rincón, L. Sierra, J. Escobar, J. Ramírez, J. Fernández. “New perspectives for coal ash utilization: Synthesis of zeolitic materials”. Fuel. Vol. 69. 1990. pp. 263-266. DOI: https://doi.org/10.1016/0016-2361(90)90187-U
D. Kolousek, V. Seidl, E. Prochazkova, J. Obsasnikova, L. Kubelkova, L. Svetlik. “Ecological utilization of power-plant fly ashes by their alteration to phillipsite: hydrothermal alteration, application”. Acta Univ. Geol. Vol. 37. 1993. pp. 167-178.
C. Lin, H. His. “Resource recovery of waste fly ash: Synthesis of zeolite-like materials”. Environ. Sci. Technol. Vol. 29. 1995. pp. 1109-1117. DOI: https://doi.org/10.1021/es00004a033
M. Park, J. Choi. “Synthesis of phillipsite from fly ash”. Clay. Sci. Vol. 9. 1995. pp. 219-229.
W. Shih, H. Chang, Z. Shen. “Conversion of class-F fly ash to zeolites”. Mater. Res. Soc. Symp. Proc. Vol. 371. 1995. pp. 39-44. DOI: https://doi.org/10.1557/PROC-371-39
C. Amrhein, G. Haghnia, T. Kim, P. Mosher, R. Gagajena, T. Amanios, L. Torre. “Synthesis and properties of zeolites from fly ash”. Environ. Sci. Technol. Vol. 30. 1996. pp. 735-742. DOI: https://doi.org/10.1021/es940482c
X. Querol, F. Plana, A. Alastuey, A. Lopez. “Synthesis of Na-zeolites from fly ash”. Fuel. Vol. 76. 1997. pp. 793-799. DOI: https://doi.org/10.1016/S0016-2361(96)00188-3
S. Rayalu, S. Meshram, M. Hasan. “Highly crystalline faujasitic zeolites from fly ash”. J. Hazard. Mater. Vol. 77. 2000. pp. 123-131. DOI: https://doi.org/10.1016/S0304-3894(00)00212-0
X. Querol, N. Moreno, J. Umaña, A. Alastuey, E. Hernández, A. López, F. Plana. “Synthesis of zeolites from fly ash: an overview”. Int. J. Coal. Geol. Vol. 50. 2002. pp. 413-423. DOI: https://doi.org/10.1016/S0166-5162(02)00124-6
N. Murayama, H. Yamamoto, J. Shibata. “Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction”. Int. J. Miner. Process. Vol. 64. 2002. pp. 1-17. DOI: https://doi.org/10.1016/S0301-7516(01)00046-1
T. Mouhtaris, D. Charistos, N. Kantiranis, A. Filippidis, A. Kassoli, A. Tsirambidis. “GIS-type zeolite synthesis from Greek lignite sulphocalcic fly ash promoted by NaOH solutions”. Microporous Mesoporous Mater. Vol. 61. 2003. pp. 57-67. DOI: https://doi.org/10.1016/S1387-1811(03)00355-X
K. Ojha, N. Pradhan, A. Samanta. “Zeolite from fly ash: synthesis and characterization”. Bull. Mater. Sci. Vol. 27. 2004. pp. 555-564. DOI: https://doi.org/10.1007/BF02707285
M. Inada, Y. Eguchi, N. Enomoto, J. Hojo. “Synthesis of zeolite from coal ashes with different silica–alumina composition”. Fuel. Vol. 84. 2005. pp. 299-304. DOI: https://doi.org/10.1016/j.fuel.2004.08.012
C. Ríos, C. Williams, C. Roberts. “A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites with potential use in the purification of wastewaters”. Fuel. Vol. 88. 2009. pp. 1403-1416. DOI: https://doi.org/10.1016/j.fuel.2009.02.012
J. Oviedo, J. Henao, C. Ríos. “A comparative study on conversion of industrial coal by-products in low SiO2 zeolite of faujasite type”. Dyna. Vol. 79. 2012. pp. 105-114.
N. Shigemoto, H. Hayashi, K. Miyaura. “Selective formation of Na-X zeolite from fly ash by fusion with sodium hydroxide prior to hydrothermal reaction”. J. Mater. Sci. Vol. 28. 1993. pp. 4781-4786. DOI: https://doi.org/10.1007/BF00414272
C. Ríos, C. Williams. “Synthesis of zeolitic materials from natural clinker: A new alternative for recycling coal combustion by-products”. Fuel. Vol. 87. 2008. pp. 2482-2492. DOI: https://doi.org/10.1016/j.fuel.2008.03.014
X. Querol, F. Plana, A. Alastuey, A. Lopez, J. Andrés, R. Juan, P. Ferrer, C. Ruiz. “A fast method of recycling fly ash: Microwave assisted zeolite synthesis”. Environ. Sci. Technol. Vol. 31. 1997. pp. 2527-2532. DOI: https://doi.org/10.1021/es960937t
M. Park, C. Choi, W. Lim, M. Kim, J. Choi, N. Heo. “Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system”. Microporous Mesoporous Mater. Vol. 37. 2000. pp. 81-89. DOI: https://doi.org/10.1016/S1387-1811(99)00196-1
M. Park, C. Choi, W. Lim, M. Kim, J. Choi, N. Heo. “Molten-salt method for the synthesis of zeolitic materials: II. Characterization of zeolitic materials”. Microporous Mesoporous Mater. Vol. 37. 2000. pp. 91-98. DOI: https://doi.org/10.1016/S1387-1811(99)00195-X
G. Hollman, G. Steenbruggen, M. Janssen. “A twostep process for the synthesis of zeolites from coal fly ash”. Fuel. Vol. 78. 1999. pp. 1225-1230. DOI: https://doi.org/10.1016/S0016-2361(99)00030-7
N. Moreno, X. Querol, J. Andrés, A. López, M. Janssen, H. Nugteren, M. Towler, K. Stanton. “Determining suitability of a fly ash for silica extraction and zeolite synthesis”. J. Chem. Tech. and Biotech. Vol. 79. 2004. pp. 1009-1018. DOI: https://doi.org/10.1002/jctb.1088
N. Moreno, X. Querol, C. Ayora, C. Fernández, M. Janssen. “Utilisation of zeolites synthesized from fly ash for the purification of acid mine waters”. Environ. Sci. Technol. Vol. 35. 2001. pp. 3526-3534. DOI: https://doi.org/10.1021/es0002924
N. Moreno, X. Querol, C. Ayora, A. Alastuey, C. Fernández, M. Janssen. “Potential environmental applications of pure zeolitic material synthesized from fly ash”. J. Environ. Eng. Vol. 127. 2001. pp. 994- 1002. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2001)127:11(994)
X. Querol, N. Moreno, J. Umaña, R. Juan, S. Hernández, C. Fernández, C. Ayora, M. Janssen, J. García, A. Linares, D. Cazorla. “Application of zeolitic material synthesized from fly ash to the decontamination of waste water and flue gas”. J. Chem. Tech. and Biotech. Vol. 77. 2002. pp. 292-298. DOI: https://doi.org/10.1002/jctb.597
C. Ríos, C. Williams, C. Roberts. “Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites”. J. Haz. Mater. Vol. 156. 2008. pp. 23-35. DOI: https://doi.org/10.1016/j.jhazmat.2007.11.123
C. Ríos. Synthesis of zeolites from geological materials and industrial wastes for potential application in environmental problems. PhD Thesis, University of Wolverhampton. Wolverhampton UK. 2008. pp. 233.
IZA Structure Commission. Database of Zeolite Structures. Available on: http://www.iza-structure.org/ databases/ Accessed: June 25, 2012.
W. Lee, J. Deventer. “Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates”. Langmuir. Vol. 19. 2003. pp. 8726-8734. DOI: https://doi.org/10.1021/la026127e
A. Fernández, A. Palomo. “Mid-infrared spectroscopic studies of alkali-activated fly ash structure”. Microporous Mesoporous Mater. Vol. 86. 2005. pp. 207-214. DOI: https://doi.org/10.1016/j.micromeso.2005.05.057
J. Gadsden. Infrared Spectra of Minerals and Related Inorganic Compounds. 1st ed. Ed. Butterworths. London, UK. 1975. pp. 277.
J. Temuujin, K. Okada, K. Mackenzie. “Effect of mechanochemical treatment on the crystallization behaviour of diphasic mullite gel”. Ceram. Int. Vol. 25. 1999. pp. 85-90. DOI: https://doi.org/10.1016/S0272-8842(98)00005-4
D. Breck. Zeolite molecular sieves: structure chemistry and use. 1st ed. Ed. John Wiley. New York, USA. 1974. pp. 771.
R. Szostak. Molecular Sieves - Principles of Synthesis and Identification. 1st ed. Ed. Van Nostrand Reinhold. New York, USA. 1989. pp. 359. DOI: https://doi.org/10.1007/978-94-010-9529-7_1
C. Cundy, P. Cox. “The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism”. Microporous Mesoporous Mater. Vol. 82. 2005. pp. 1-78. DOI: https://doi.org/10.1016/j.micromeso.2005.02.016
P. Cubillas, M. Anderson. “Synthesis Mechanism: Crystal Growth and Nucleation”. J. Čejka, A. Corma, S. Zones (editors). Zeolites and Catalysis, Synthesis, Reactions and Applications. 1st ed. Ed. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany. 2010. pp. 1-55. DOI: https://doi.org/10.1002/9783527630295.ch1
J. Jaarsveld, J. Deventer. “Effect of the alkali metal activator on the properties of fly ash-based geopolymers”. Ind. Eng. Chem. Res. Vol. 38. 1999. pp. 3932-3941. DOI: https://doi.org/10.1021/ie980804b
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.