Calculation of the helical parallel transmission of a wind turbine gearbox

Authors

  • César Alberto Chagoyén-Méndez Central University "Marta Abreu" de las Villas https://orcid.org/0000-0002-9377-3234
  • Jorge Laureano Moya-Rodríguez Central University "Marta Abreu" de las Villas
  • Constantina Álvarez-Peña Universidad de Oviedo
  • Yaidel Muñiz-Acosta Central University "Marta Abreu" de las Villas

DOI:

https://doi.org/10.17533/udea.redin.16530

Keywords:

wind turbine, gearbox, helical parallel transmissions

Abstract

The  gearbox  of  a  wind  turbine  is  the  component  of  greatest  mechanical  complexity and is responsible for most wind turbines operational downtime and  for  increased  costs.  It  doesn’t  reach  a  20  years  projected  life.  All  the studies, until now, indicate that these failures arise from the design process. This  work  demonstrates  some  of  the  inadequacies  of  the  current  design  standards of wind turbines gearboxes, through the realization of a comparison of  the  results  of  the  calculation  of  the  helical  parallel  transmission  of  an  2,5  ME  wind  turbine,  carried  out  by  three  ways:  ISO  6336:2006  Method  B  and  AGMA  2101-D04  (Metric  Edition)  standards  and  by  using  numeric  simulation.  The  results  of  this  analysis  are  that  there  are  no  problems  of  strength  or  rigidity  in  both transmissions,  however  the  differences  between  these three calculation methods are considerable.

|Abstract
= 173 veces | PDF (ESPAÑOL (ESPAÑA))
= 86 veces|

Downloads

Download data is not yet available.

Author Biographies

César Alberto Chagoyén-Méndez, Central University "Marta Abreu" de las Villas

Full Professor, Department of Mechanical Engineering, Faculty of Mechanical Engineering.

Jorge Laureano Moya-Rodríguez, Central University "Marta Abreu" de las Villas

Department of Mechanical Engineering, Faculty of Mechanical Engineering.

Constantina Álvarez-Peña, Universidad de Oviedo

Department of Electric Engineering.

Yaidel Muñiz-Acosta, Central University "Marta Abreu" de las Villas

Department of Mechanical Engineering, Faculty of Mechanical Engineering.

References

H. Link, W. LaCava, J. van Dam, B. McNiff, S. Sheng, R. Wallen, et al. Gearbox Reliability Collaborative Project Report Findings from Phase 1 and Phase 2 Testing. Technical Report NREL/TP-5000-51885. National Renewable Energy Laboratory.Colorado, USA. 2011. pp. 1-88. Available on: http://www.nrel.gov/docs/fy11osti/51885.pdf Accessed: February 24, 2013. DOI: https://doi.org/10.2172/1018489

J. Helsen, F. Vanhollebeke, B. Marrant, D. Vandepitte, W. Desmet. “Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes”. Renewable Energy. Vol. 36. 2011. pp. 3098-3113. DOI: https://doi.org/10.1016/j.renene.2011.03.023

W. Dong, Y. Xing, T Moan. “Time Domain Modeling and Analysis of Dynamic Gear Contact Force in a Wind Turbine Gearbox with Respect to Fatigue Assessment“. Energies. Vol. 5. 2012. pp. 4350-4371. DOI: https://doi.org/10.3390/en5114350

W. LaCava, J. Keller, B. McNiff. Gearbox Reliability Collaborative: Test and Model Investigation of Sun Orbit and Planet Load Share in a Wind Turbine Gearbox. Conference paper NREL/CP-5000-54618. National Renewable Energy Laboratory. Colorado, USA. 2012. pp. 1-13. Available on: http://www.nrel.gov/docs/fy12osti/54618.pdf Accessed: February 24, 2013.

J. Keller, Y. Guo, W. LaCava, H. Link, B. McNiff. Gearbox Reliability Collaborative Phase 1 and 2: Testing and Modeling Results. Conference paper NREL/CP-5000-55207. National Renewable Energy Laboratory. Colorado, USA. 2012. pp. 1-11. Available on: http://www.nrel.gov/docs/fy12osti/55207.pdf Accessed: February 24, 2013.

Y. Guo, J. Keller, R. Parker. Dynamic Analysis of Wind Turbine Planetary Gears Using an Extended Harmonic Balance Approach. Conference paper NREL/CP-5000-55355. National Renewable Energy Laboratory. Colorado, USA. 2012. pp. 1-18. Available on: http://www.nrel.gov/docs/fy12osti/55355.pdf Accessed: February 24, 2013.

International Organization for Standardization. Wind Turbines - Part 4: Standard for Design and Specification of Gearboxes. ISO/IEC 81400-4:2005. Geneva, Switzerland. 2005. pp. 7-27.

F. Oyague. Gearbox Modeling and Load Simulation of a Baseline 750-kW Wind Turbine Using State-of-theArt Simulation Codes. Technical Report NREL/TP500-41160. National Renewable Energy Laboratory. Colorado, USA. 2009. pp. 1-94. Available on: http://www.nrel.gov/docs/fy09osti/41160.pdf Accessed: April 14, 2013. DOI: https://doi.org/10.2172/947884

Oyague F. Gearbox Reliability Collaborative (GRC) Description and Loading. Technical Report NREL/TP5000-47773. National Renewable Energy Laboratory. Colorado, USA. 2011. pp. 1-28. Available on: http://www.nrel.gov/docs/fy12osti/47773.pdf Accessed: April 14, 2013.

F. Oyague. Progressive Dynamical Drive Train Modeling as Part of NREL Gearbox Reliability Collaborative. Conference paper NREL/CP-500-43473. National Renewable Energy Laboratory. Colorado, USA. 2008. pp. 1-16. Available on: http://www.nrel.gov/docs/fy08osti/43473.pdf Accessed: April 14, 2013.

F. Oyague, D. Gorman, S. Sheng. NREL Gearbox Reliability Collaborative Experimental Data Overview and Analysis. Conference paper NREL/CP-500-48232. National Renewable Energy Laboratory. Colorado, USA. 2010. pp. 1-14. Available on: http://www.nrel.gov/docs/fy10osti/48232.pdf Accessed: May 16, 2013.

J. Peeters. Simulation of dynamic drive train loads in a wind turbine. PhD Thesis. Department of Mechanical Engineering, Katholieke Universiteit Leuven. Leuven, Belgium. 2006. pp. 1-336. Available on: http://hdl.handle.net/1979/344 Accessed: May 16, 2013.

International Organization for Standardization. Calculation of load capacity of spur and helical gears. ISO 6336:2006 Method B. 2nd ed. 2006-09-01. Geneva, Switzerland. 2006. pp. 2-30.

AGMA. Geometry factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth. AGMA Standard 908- B89. Ed. American Gear Manufacturers Association. Virginia, USA. 1989. pp. 7-17.

KISSsoft. Design software for mechanical engineering applications. Copyright 1998-2011 by KISSsoft AG, Rosengartenstrasse 4, 8608. Bubikon, Suiza. Available on: http://www.KISSsoft.AG Accessed: May 16, 2013.

MatWeb. Database of material properties. AISI 1045 Steel, cold drawn. Blacksburg, USA. MatWeb, LLC. 2011. Available on: http://www.matweb.com/search/DataSheet.aspx?MatGUID=cbe4fd0a73cf4690853935f52d910784&ckck=1 Accessed: February 25, 2013.

J. Yang, L. Zhang. “Dynamic Response and Dynamic Load of wind turbine Planetary Gear Transmission System under changing excitation”. Applied Mechanics and Materials. Vol. 121-126. 2012. pp. 2671-2675. DOI: https://doi.org/10.4028/www.scientific.net/AMM.121-126.2671

Published

2014-11-13

How to Cite

Chagoyén-Méndez, C. A., Moya-Rodríguez, J. L., Álvarez-Peña, C., & Muñiz-Acosta, Y. (2014). Calculation of the helical parallel transmission of a wind turbine gearbox. Revista Facultad De Ingeniería Universidad De Antioquia, (73), 157–165. https://doi.org/10.17533/udea.redin.16530